Weak Links in Authentication Chains:

A Large-scale Analysis of Email Sender Spoofing Attacks

Kaiwen Shen¹, Chuhan Wang¹, Minglei Guo, Xiaofeng Zheng, Chaoyi Lu, Baojun Liu, Yuxuan Zhao, Shuang Hao, Haixin Duan, Qingfeng Pan, Min Yang

Email: skw17@mails.tsinghua.edu.cn

Email Spoofing Attacks

* How Email Spoofing Attacks Happen:

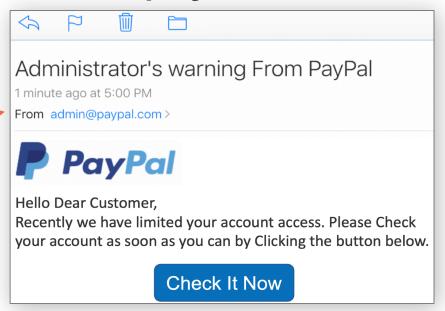
Impact of Email Spoofing Attack Today

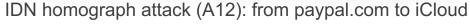
600%

Increase over 600% due to coronavirus pandemic (COVID-19).

"The most devastating attacks by the most sophisticated attackers, almost always begin with the simple act of spearphishing." Jeh Johnson Former Secretary, Department of Homeland Security

\$5.3B→\$12.5B

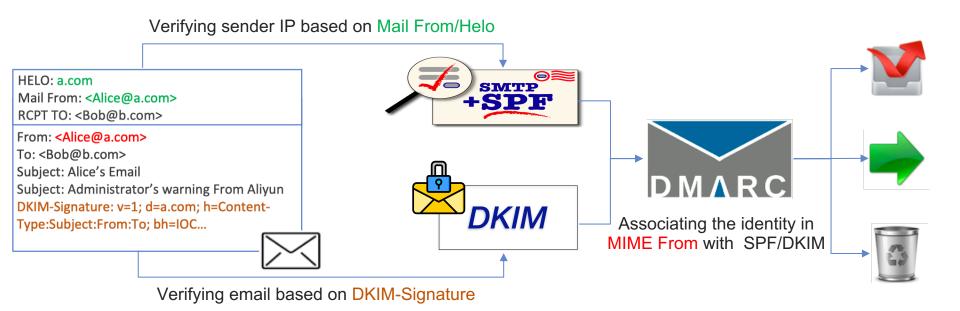

FBI reports business have lost over \$12.5B. More than **double** in just over two years.


An Example of Our Email Spoofing Attack

SMTP DATA

Displayed Email

It's so hard to spot spoofing email!


Email Spoofing Protections

Email Security Extension Protocol

- Sender Policy Framework (SPF)
 - Verifying sender IP based on Mail From/Helo
- DomainKeys Identified Mail (DKIM)
 - Verifying email based on DKIM-Signature
- Domain-based Message Authentication, Reporting and Conformance (DMARC)
 - Offering a policy suggesting solution to handle unverified emails
 - Associating the identity in MIME From with SPF/DKIM

Email Spoofing Protections

How Three Email Security Protocols Work:

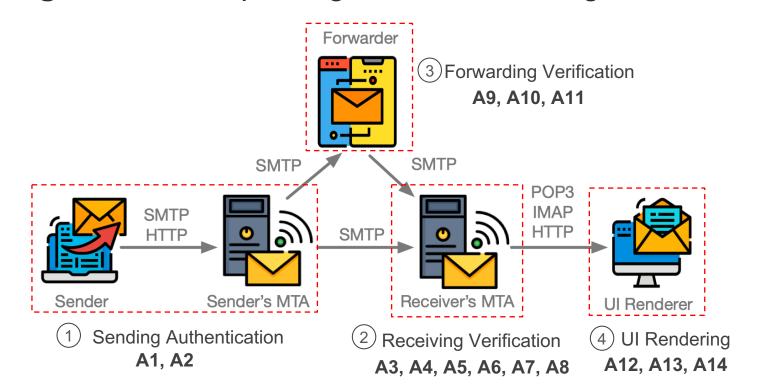
Email Spoofing Protections

UI-level Spoofing Protection

Sender Inconsistency Checks (SIC)

A spoofing email that fails the Sender Inconsistency Checks.

With these anti-spoofing protections,


why email spoofing attack is still possible

Our Works

- Goal: Analyze four critical stages of authentication chain.
- Findings: 14 email spoofing attacks, including 9 new attacks.

Measurement and Evaluation in the Real-world

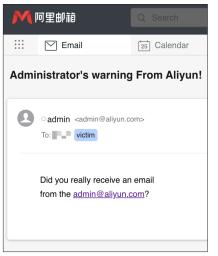
❖ A large-scale experiment on 30 popular email services and 23 email clients.

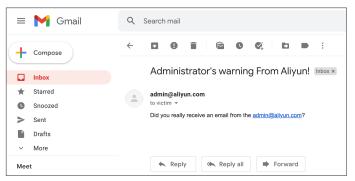
Email Services	Protocols Deployment			UI Protections	Weaknesses in Four Stages of Email Flows			
	SPF	DKIM	DMARC	SIC	Sending	Receiving	Forwarding	UI Rendering
Gmail.com	√	✓	✓	✓		A ₆		A ₁₂
Zoho.com	✓	✓	✓	✓	A ₂	A_4	A_{11}	A ₁₃
iCloud.com	✓	✓	✓		A ₂	A_4, A_7	A9	A ₁₂
Outlook.com	✓	✓	✓		A ₂	A ₇	A9	A ₁₄
Mail.ru	✓	\checkmark	✓			A_4		A ₁₂
Yahoo.com	✓	✓	✓		A ₂	A_3, A_7	A_{10}	A ₁₄
QQ.com	✓	✓	✓	✓	A ₂	A ₅		A_{13}, A_{14}
139.com	✓		✓	✓		A_4		A ₁₃
Sohu.com	✓				A ₂	A_4, A_5	A9	A ₁₃
Sina.com	✓				A ₂	A_3, A_4, A_5, A_8		A_{13}, A_{14}
Tom.com	✓	✓	✓		A ₂		A9	
Yeah.com	✓	✓	✓	✓	A ₂	A_3, A_4, A_5, A_7, A_8	A9	A ₁₂ , A ₁₃ , A ₁₄
126.com	✓	✓	✓	✓	A ₂	A_3, A_4, A_5, A_8	A_9	A ₁₂ , A ₁₃ , A ₁₄
163.com	✓	✓	✓	✓	A ₂	A_3, A_4, A_5, A_7, A_8	A9	A_{12}, A_{13}, A_{14}
Aol.com	✓	✓	✓		A ₂	A_5, A_7		A ₁₄
Yandex.com	✓	✓	✓			A_3, A_4, A_6, A_7, A_8	A9	A ₁₄
Rambler.ru	✓	\checkmark	✓		A ₂	A_3		
Naver.com	✓	✓	✓		A ₂	A_4, A_5, A_8		
21cn.com	✓				A ₂	A_4, A_5	A9	
Onet.pl	✓				A ₂	A_4, A_5		
Cock.li	✓	✓			A ₂	A ₃ , A ₄		A_{13}, A_{12}
Daum.net	✓		✓			A ₅		
Hushmail.com	✓	✓	✓			A_3, A_4, A_8		A ₁₂
Exmail.qq.com	✓	✓	✓	✓	A ₂	A ₅		A ₁₄
Coremail.com	✓	✓	✓	✓	A ₂	A ₈	A9	
Office 365	✓	✓	✓	✓	A_2	A ₄	A_9, A_{10}, A_{11}	A ₁₄
Alibaba Cloud	✓	✓	✓	✓	A ₂	A_3, A_4, A_5, A_8	A_{10}	A ₁₃
Zimbra	√	✓	✓	✓	A_1, A_2	A_3, A_5, A_8	A9	A_{12}, A_{13}
EwoMail	✓	✓	✓		A ₂	A_3, A_4, A_8		A ₁₃
Roundcube	✓	✓	✓		A_1, A_2	A ₃ , A ₄ , A ₈		A ₁₂

OS	Clients	SIC	Weaknesses
	Foxmail	√	A ₆ , A ₇ , A ₁₃ , A ₁₄
	Outlook	√	A_6, A_{13}
Windows	eM Client	✓	A_6, A_{12}
	Thunderbird		A_6, A_{13}, A_{14}
	Windows Mail		A_6, A_7, A_{13}, A_{14}
	Foxmail		A ₆ , A ₁₃
	Outlook	✓	A_6, A_{13}
MacOS	eM Client	✓	$A_6, A_7, A_{12}, A_{13}, A_{14}$
	Thunderbird		A_6, A_{13}, A_{14}
	Apple Mail		A_6, A_{13}, A_{14}
	Thunderbird		A ₆ , A ₁₃
	Mailspring		A_6, A_{13}, A_{14}
Linux	Claws Mail		A_6, A_{14}
	Evolution		A_6, A_{13}, A_{14}
	Sylpheed		A_6, A_{13}, A_{14}
	Gmail		A_6, A_{13}
Android	QQ Mail	✓	A_6, A_{13}, A_{14}
	NetEase Mail		A_6, A_{12}, A_{13}
	Outlook	✓	A_6, A_{13}
	Mail.app		A_6, A_7, A_{13}, A_{14}
iOS	QQ Mail	✓	A_6, A_{13}
	NetEase Mail		A_6, A_{12}, A_{13}
	Outlook	✓	A_6, A_{13}

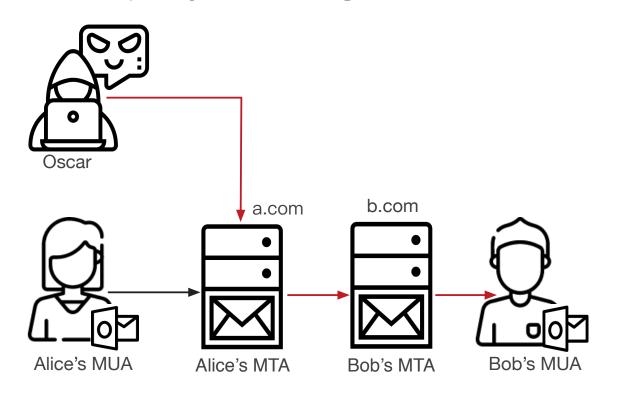
Measurement and Evaluation in the Real-world

163 网易免费邮 mail.163.com





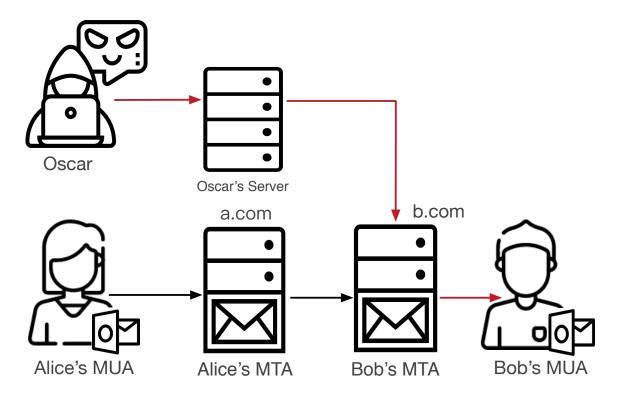
Apple Mail


All of tested email services are vulnerable to certain types of attacks.

Attacks

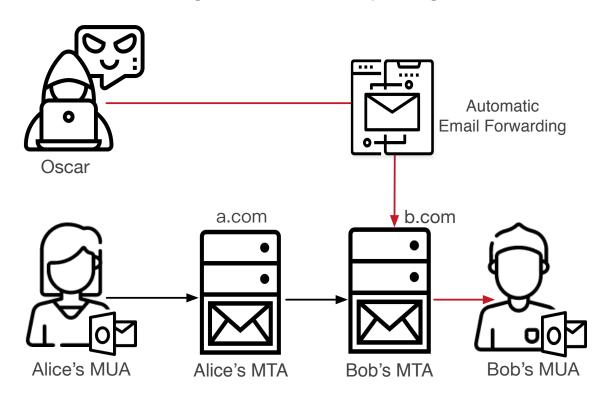
Three Types of Attack Models

a. Shared MTA Attack

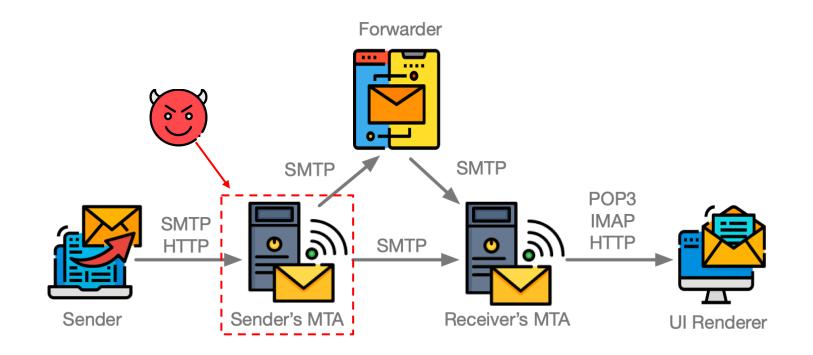

Oscar@a.com sends spoofing email as Alice@a.com with the a.com MTA

Three Types of Attack Models

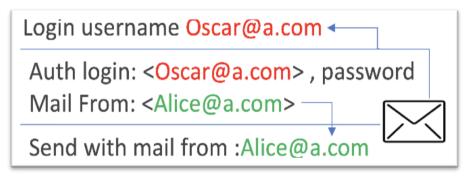
b. Direct MTA Attack


Oscar sends spoofing email through his self-build email server.

Three Types of Attack Models


c. Forward MTA Attack

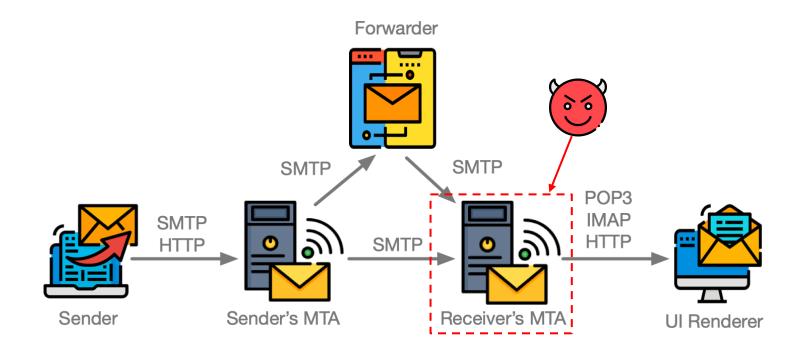
Oscar abuses email forwarding service to send spoofing emails.



Attacks in Email Sending Authentication

- ❖ Successful Attacks: modifying Auth Username, Mail From, From arbitrarily.
- Benefits: abusing IP reputation of well-known email services.

Attacks in Email Sending Authentication



❖ Mail From ≠ From (A2)

Attacks in Email Receiving Verification

- Successful Attacks: bypassing SPF, DKIM and DMARC.
- Benefits: hard to spot spoofing email passing three security protocols.

Attacks in Email Receiving Verification

Empty Mail From (A3)

- * RFC 5321: Empty mail from is allowed to prevent bounce loop-back
- * RFC 7208: Use helo field as an alternative, if mail from is empty

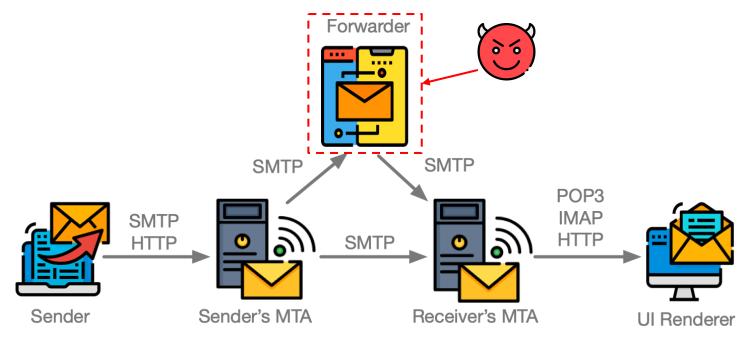
Empty Mail From attack bypassing the SPF verification

Attacks in Email Receiving Verification

Inconsistent Parsing of Ambiguous Emails

Multiple from headers(A4)

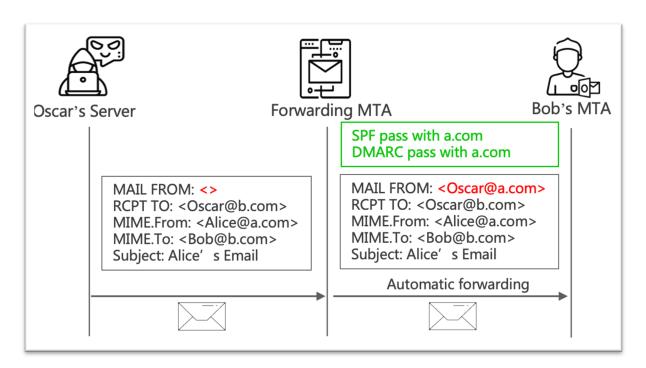
Ordinary multiple From attack



Multiple From attack with spaces

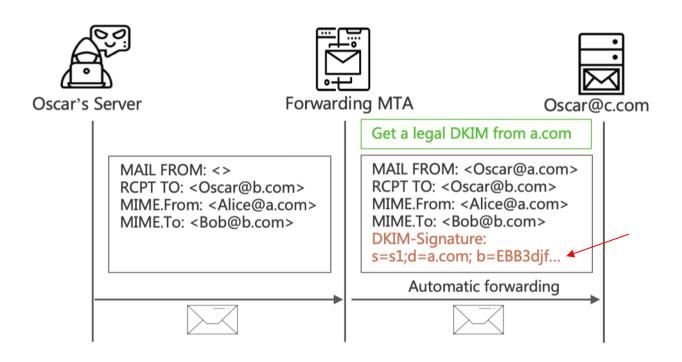
Attacks in Email Forwarding Verification

Successful Attacks:


- Freely configure without authentication verification
- A higher security endorsement

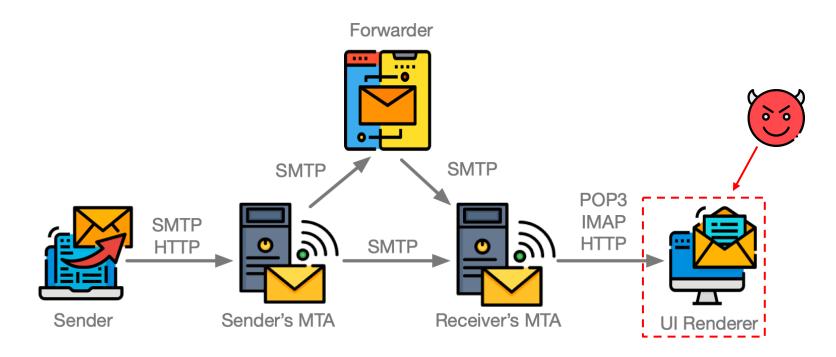
Attacks in Email Forwarding Verification

Unauthorized Forwarding Attack (A9)


❖ Abusing trusted IP: Exploiting forwarding service to bypass SPF and DMARC

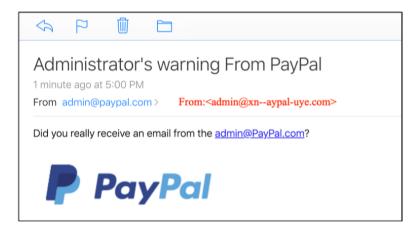
Attacks in Email Forwarding Verification

DKIM-Signature Fraud Attack (A10)


❖ A higher security endorsement : obtain a legal DKIM-Signature

Attacks in Email UI Rendering

Successful Attack:


- The displayed address is inconsistent with the real one.
- No any security alerts on the MUA.

Attacks in Email UI Rendering

New Challenge: International Email

- Internationalized domain names (IDN) + email address internationalization (EAI)
- Allow Unicode characters in email address

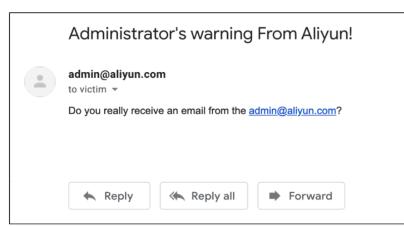
IDN homograph attack (A12)

admin@gm@ail.com ==> admin@gmail.com

Missing UI Rendering Attack (A13)

\u202emoc.a@\u202dalice ==> Alice@a.com

Right-to-left Override Attack (A14)

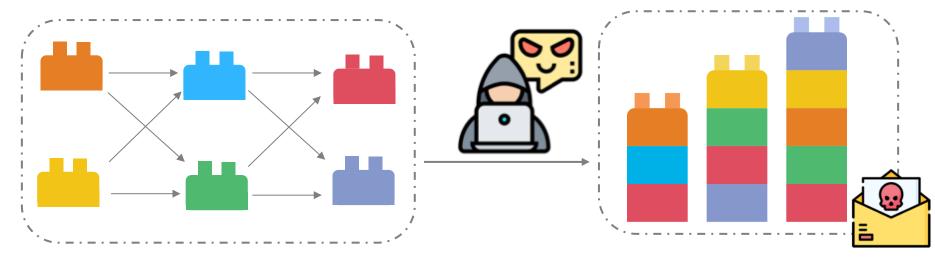

Combined Attack

Limitations on a single attack:

- ➤ Some attacks (e.g., A2, A3) do not bypass all protections.
- Most vendors have fixed the attacks (bypassing all SPF,DKIM,DMARC and SIC).

Combined Attacks:

More realistic emails (bypassing all prevalent email security protocols).

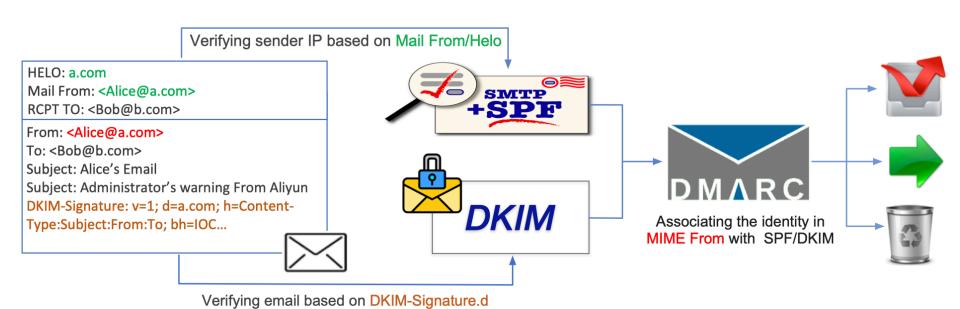

(a) Gmail's Web UI does not display any spoofing alerts

Message ID	<5dcf2150.1c69fb81.4f281.9f87SMTPIN_ADDED_MISSING@mx.google.com>			
Created at:	Sat, Nov 16, 2019 at 5:42 AM (Delivered after 1432 seconds)			
From:	admin@aliyun.com			
То:	victim@gmail.com			
Subject:	Administrator's warning From Aliyun!			
SPF:	PASS with IP 2402:f000:1e:4000:b061:551e:2cec:b6d			
DKIM:	'PASS' with domain aliyun.com Learn more			
DMARC:	'PASS' Learn more			

(b) The spoofing email passes all email security protocol verification A example to impersonate admin@aliyun.com on

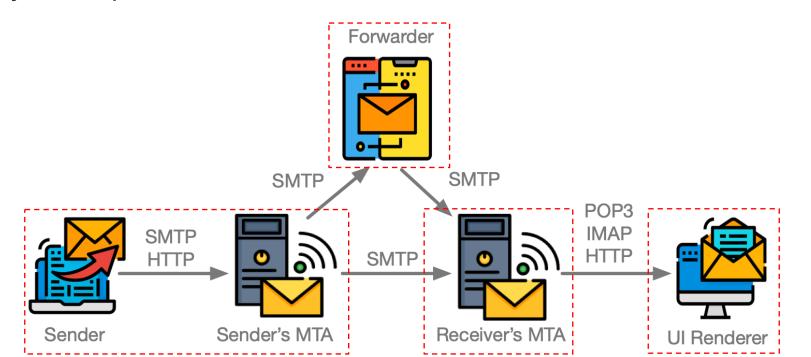
Combined Attacks

❖ Numerous feasible combined attacks by combining 3 types of attack models and 14 attack techniques in the 4 authentication stages.


Different Attack Models/Techniques

Combined Spoofing Attacks

Weak Links in Authentication Chains


Weak Links among Multi-protocols

Spoofing attacks still succeed due to the inconsistency of entities protected by different protocols.

Weak Links among Multi-roles

- * Four different roles: senders, receivers, forwarders and UI renderers.
- The specifications do not state any clear responsibilities of four roles.
- Any failed part can break the whole chain-based defense.

Weak Links among Multi-services

- Different email services have different configurations and implementation procedures.
- Numerous email components deviate from RFC specifications while dealing with ambiguous header.

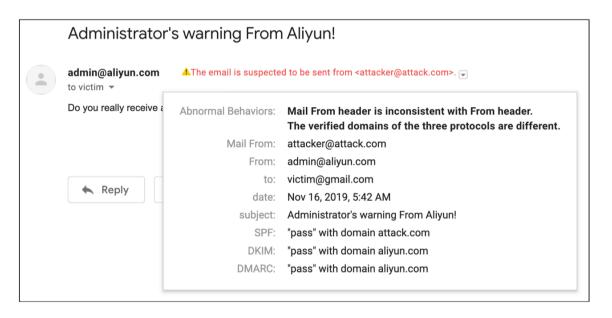
eM Client

The inconsistency among different services creates security threats.

Mitigation

Responsible Disclosure

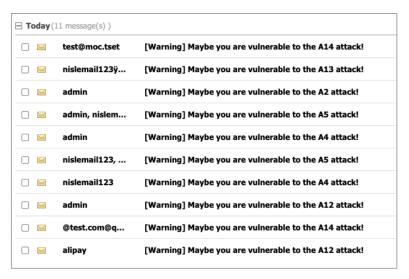
- Helping email vendors mitigate identified email spoofing attacks.
 - > Vendors have 10 months to mitigate it before this paper is published.

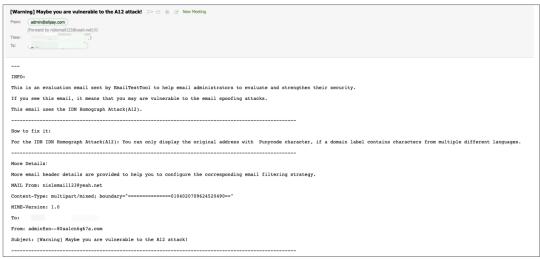


Mitigation and Solution

* UI Notification:

NoSpoofing: a chrome extension for Gmail.


An example of UI notification against the combined attack


https://chrome.google.com/webstore/detail/nospoofing/ehidaopjcnapdglbbbjgeoagpophfjnp

Mitigation and Solution

Evaluation Tools:

Espoofing: helping email administrators to evaluate and strengthen their security.

An example of using this tool to evaluate the security of target email system.

Thank you!

Q&A

{skw17, wang-ch19}@mails.tsinghua.edu.cn