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Abstract—The Internet has become a complex distributed
network with numerous middle-boxes, where an end-to-end
HTTP request is often processed by multiple intermediate servers
before it reaches its destination. However, a general problem
in this distributed network is the semantic gap attack, which is
defined as inconsistent semantic interpretations in the processing
chain. While some studies have found individual semantic gap
attacks, most of them are based on ad-hoc manual analysis, which
is inadequate for fundamentally enhancing the security assurance
of a system as complex as the HTTP network.

In this work, we propose HDiff, a novel semi-automatic
detecting framework, systematically exploring semantic gap at-
tacks in HTTP implementations. We designed a documentation
analyzer that employs natural language processing techniques
to extract rules from specifications, and utilized differential
testing to discover semantic gap attacks. We implemented and
evaluated it to find three kinds of semantic gap attacks in
10 popular HTTP implementations. In total, HDiff found 14
vulnerabilities and 29 affected server pairs covering all three
types of attacks. In particular, HDiff also discovered three new
types of attack vectors. We have already duly reported all
identified vulnerabilities to the involved HTTP software vendors
and obtained 7 new CVEs from well-known HTTP software,
including Apache, Tomcat, Weblogic, and Microsoft IIS Server.

Index Terms—Web Application Security, Semantic Gap Attack,
Differential Testing, Documentation Analysis

I. INTRODUCTION

The past few decades have witnessed the rapid popularity
and deployment of middleboxes [6], such as cache servers,
proxy servers, web application firewalls, and content delivery
networks (CDNs). They are widely deployed on the Internet
to improve security and performance. As a result, a typical
end-to-end HTTP request is now processed by multiple inter-
mediate servers before it reaches its destination.

However, HTTP communications can be exposed to Seman-
tic Gap Attacks [14] if multiple middleboxes exist in the path.
The key reason is that when a malicious client sends an HTTP
message with ambiguous fields, different implementations in
the HTTP processing chain may interpret it differently. Such
semantic inconsistencies can lead to severe security conse-
quences, such as cache poisoning, security policy bypass, or
denial-of-services attack. In recent years, there has been a lot

of work revealing security issues caused by such semantic
gap attacks, such as Host of Troubles [15], HTTP Request
Smuggling [3], and Cache-Poisoned Denial-of-Service Attack
[36], illustrating such issues have become a serious threat to
the Internet.

Though have discovered individual semantic gap attacks [3],
[15], [36], most previous studies are based on ad-hoc manual
analysis or only analyze one type of semantic gap attack.
They require significant human effort in analyzing documents
and testing implementation, which is not scalable and error-
prone. Thus, a more systematic, generalizable, and extendable
methodology is needed to explore and discover previously
unknown venues for exploitation.

To address this research gap, we analyzed and summarized
the root causes of semantic gap attacks based on previous
works [15], [20], [35], [36], [42]. We found inconsistencies
in different implementations often occur due to two reasons:
First, some implementations do not follow RFC requirements,
either due to intended relaxation or programming mistakes.
Second, RFC defines optional requirements allowing develop-
ers to use their discretion. For example, RFC documents use
keywords like MAY, SHOULD, or SHOULD NOT to specify
rules. However, developers may prefer different preferences in
implementing these rules. When different implementations are
connected together, semantic gap bugs may be revealed and
lead to security attacks.

Therefore, a systematic solution to discover semantic gap
attacks relies on an in-depth understanding of HTTP protocol
specifications. It is meaningful to explore a method to auto-
matically extract semantic information in RFC documents and
guide the generation and mutation of test cases.
Challenges. Systematically discovering semantic gap attacks
with RFC documents is non-trivial, and several challenges
need to be addressed. First, RFC specifications are written
in natural language that might be unstructured and include
implicit requirements. It is difficult to extract such infor-
mal descriptions from RFC documents and convert them to
formal invariants. Besides, some HTTP RFC specifications
are lengthy (e.g., RFC 7230 documenting one part of HTTP
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specification includes 89 pages). Manually extracting all HTTP
documents needs significant human efforts and is error-prone.
Second, most semantic gap bugs do not display any explicitly
erroneous behavior like crashes or memory corruption bugs
and thus are hard to detect.
HDiff. In this paper, we propose a novel detecting framework,
HDiff, to address the aforementioned problems and systemat-
ically find semantic gap attacks in HTTP implementations.

For the first challenge, we design Documentation Analyzer
which uses natural language processing techniques to extract
rules from RFC documents automatically. We focus on ex-
tracting two types of rules: 1) Specification Requirements
(SR). SRs are informal descriptions to define HTTP semantic
actions, like actions that client/proxy/server should follow
when sending or receiving a specific request. A key obser-
vation is that all SR sentences tend to use strong sentimental
words (e.g., MUST, ought to, not allowed) in emphasizing
the importance of a constraint, particularly those security-
critical constraints. Thus, HDiff utilizes a sentiment-based SR
finder to extract these sentences with potential SRs. After that,
HDiff transforms SRs into formal rules through dependency
parsing analysis and text entailment techniques. 2) ABNF
rules, which are standardized formal grammar and describe
the syntax of parsable structures in HTTP protocol. HDiff
implements an ABNF filter based on the format features to
automatically extract ABNF grammar from RFC, including
character cleaning, regular extraction, and separating prose
rules. Based on those extracted semantic and syntax rules,
HDiff further generates a large number of test cases through
the ABNF generator and SR translator.

To overcome the second challenge, HDiff utilizes Differen-
tial Testing to discover semantic gap attacks. Previous work
has proved that differential testing is a promising approach for
discovering these attacks [19], [20], [29], [39]. HDiff uses dif-
ferent programs of the same functionality as cross-referencing
oracles, comparing their outputs across many inputs. Any
discrepancy in the programs’ behaviors on the same input
is marked as a potential bug. HDiff employs this differential
fuzzing strategy, first testing each target implementation in
isolation and then comparing logs and responses to identify the
pairs that behave differently, signaling a vulnerability. Besides,
HDiff can further determine whether a discrepancy conforms
with RFC requirements since it has extracted formal rules by
Documentation Analyzer, and thus can quickly locate the root
cause of discovered bugs.
Experiments and Findings. We implemented the HDiff
framework and evaluated it by detecting three kinds of se-
mantic gap attacks: Host of Troubles (HoT) attack, Cache-
Poisoned Denial-of-Service (CPDoS) attack, HTTP Request
Smuggling (HRS) attack. In the experiment, HDiff first an-
alyzed the core documents of HTTP 1.1 (i.e., RFC 7230-
7235) [22]–[24], [30], [43], [44], which include 172,088
words and 5,995 valid sentences. It extracted 117 specification
requirements (SRs) and 269 ABNF grammar rules. Based on
that, HDiff generated 8,427 test cases using the SR translator
and 92,658 test cases using the ABNF generator. Last, we

tested the generated test cases against 10 popular HTTP
implementations through difference analysis.

In total, we found 14 vulnerabilities covering all three types
of attacks in 10 popular HTTP implementations (including
Tomcat, IIS, Weblogic). Specifically, we found: 1) all HTTP
proxies could be affected by our 11 exploits for CPDoS at-
tacks; 2) Nine different servers pairs (e.g., Varnish-IIS, Nginx-
Weblogic) are vulnerable to HoT attacks; 3) Eight HTTP
implementations do not fully follow HTTP specifications,
which could be potentially exploited for HRS attacks. We
reported all identified vulnerabilities to the involved HTTP
software vendors, and 7 new CVEs were assigned to these
vulnerabilities.

In particular, we also discovered three new types of attack
vectors that have not been discussed in previous work. We
found that incorrect HTTP-version can be exploited to launch
HRS (lower or higher HTTP-version with chunked encod-
ing) and CPDoS (malformed HTTP-version, e.g., HTTP/0.9,
1.1/HTTP) attacks. Besides, the inconsistent processing of
Expect header by different implementations can also lead to
HRS or CPDoS attacks. More details are described in Section
IV-B.
Contributions. Our contributions are outlined as follows:

• New Detecting Framework. We introduced HDiff, a novel
detecting framework to discover semantic gap attacks
that threaten the Internet. We utilized a documentation
analyzer to generate a number of test cases from RFC
documents and employed differential testing to find se-
mantic gaps among different implementations.

• New Implementation and Findings. We implemented our
design and evaluated it to discover three kinds of HTTP
semantic gap attacks: HTTP Request Smuggling, Host-of-
Trouble, and Cache-Poisoned Denial-of-Service attack.
We tested it on 10 popular HTTP implementations and
found new vulnerabilities that affect well-known HTTP
software, including Apache, Tomcat, Weblogic, and Mi-
crosoft IIS Server. We release HDiff1 through Github
for researchers to further study vulnerabilities of HTTP
implementations in the future.

• Responsible Disclosure. We reported our findings to af-
fected vendors and received positive feedback. Among
the discovered vulnerabilities, 7 new CVEs have been
assigned to the immediately exploitable ones.

II. BACKGROUND

A. HTTP Standards

Hypertext Transfer Protocol (HTTP) [44] is a text-based
and ASCII-encoded protocol for fetching resources on the
Web, which has been the foundation of web data transmis-
sion. HTTP standards are commonly defined in Request For
Comments (RFCs), which describe the semantic information
through natural language and the message format through
ABNF rules. As stated in RFC 7230 [44], HTTP protocol

1HDiff : https://github.com/mo-xiaoxi/HDiff
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conformance includes both the semantics and syntax of pro-
tocol elements. This work expects to analyze RFC documents
extracting these elements for differential testing in HTTP
protocol implementations.
Specification Requirement (SR). An RFC specification con-
tains a series of sentences to express requirements on protocol
implementations, such as “A server MUST reject any received
request message that contains whitespace between a header
field-name and colon with a response code of 400 (Bad
Request)”. They are used to guide developers to implement
the protocol correctly and ensure security. For convenience,
we define this type of sentence as Specification Requirements
(SRs). A key observation is that all SRs tend to follow a
specific semantic structure, including a message description
specifying the request format, and a role action indicating the
action in terms of receiving or sending this message. Any
semantic bug that causes deviations from these specification
requirements might render the protocol insecure.
ABNF Rule. Augmented Backus-Naur Form (ABNF [21])
is a standardized formal grammar notation for context-free
grammars, being used to describe the syntax of parsable
structures in communication protocols. Most RFCs use
ABNF to describe formal specifications, like the example
in Figure 1. An ABNF rule is a set of derivation rules,
such as HTTP-version = HTTP-name "/" DIGIT
"." DIGIT. The left value is a rule name and the rule
definition is set on the right side. Additionally, ABNF rules
in one RFC can also reference ABNF rules in other RFCs
in prose-val format (e.g., as shown in Figure 1 line 6). Since
inconsistent parsing may lead to security vulnerabilities, such
as HTTP request smuggling [3], it is essential to ensure that
the parse of formal specification obeys ABNF rules.

Fig. 1: ABNF rules defining HTTP grammar from RFC 7230.

B. Natural Language Processing

Sentiment Analysis. Sentiment analysis [38], also known as
opinion mining, is a technique using NLP and text analysis to
identify, extract and study the emotional tone behind a body
of text. One of its main tasks is sentiment classification, which
aims to classify the polarity of the text into positive or negative
opinions. A key observation is that all SRs presented in the
specifications are characterized by a strong sentiment to stress
the constraints. Thus, HDiff utilizes a sentiment classifier
based on stanza [41] to find sentences with SR in RFCs.
Dependency Parsing. Dependency parsing [31] is an NLP
technique to extract the dependency tree of a sentence. The
dependency tree presents its grammatical structure and defines
grammatical relations between the linguistic units (words)

in one sentence. The state-of-the-art dependency parser (i.e.,
spaCy RoBERTa parser [1]) can achieve a 95.1% accuracy in
grammatical relation discovery from a sentence. In our study,
we leverage the spaCy parser to generate dependency trees in
the Text2Rule converter module, which is particularly useful
for extracting keywords and clause divisions of sentences.
Textual Entailment (TE). Textual entailment (TE [8]) is a
directional relation between two natural-language texts, which
predicts whether the facts in one of them (called a premise)
necessarily imply the facts in the other (called a hypothesis).
If a premise entails a hypothesis, then a human believing
the premise would typically be able to conclude that the
hypothesis is most likely true [10]. It is designed to identify
that the same meaning is expressed by or can be inferred from,
various language expressions, such as grammatical variations
(e.g., passive tense), synonyms, and other semantic preserving
transformations. Thus, it is particularly useful for determining
the implication of specification requirement hypotheses. In
our research, we utilize the AllenNLP library [33], which
integrates state-of-the-art textual entailment NLP models for
converting a specification requirement to a formal expression
used for the SR translator.

C. Semantic Gap Attack

Fig. 2: Semantic Gap Attack: different behavior when parsing
an ambiguous HTTP message.

As shown in Figure 2, the semantic gap attack leverages
different behaviors between a front-end server (e.g., cache,
proxy, firewall) and a back-end server (e.g., load balancing,
proxy, origin server) when parsing one ambiguous HTTP
request. The inconsistency in message processing can lead to
different perceptions of an HTTP message’s syntactic validity
or caching behavior. It will further lead to serious secu-
rity vulnerabilities, such as cache poisoning, security policy
bypassing, and denial-of-service attacks. In this study, we
take three representative semantic gap attacks as examples to
validate our approach.
HTTP Request Smuggling (HRS) Attack. An HTTP
Request Smuggling (HRS [3]) attack exploits a seman-
tic gap in parsing more than one Content-Length or
Transfer-Encoding header fields to smuggle a hid-
den request through an intermediary. With this technique,
a malicious client can provoke a web cache poisoning
if two intermediaries pick different Content-Length/
Transfer-Encoding header fields and therefore read dif-
ferent amounts of the payload. Besides, this semantic gap bug
can also be applied to hide malicious requests from security
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Fig. 3: The Architecture of HDiff.

intermediaries such as WAFs, Intrusion Detection Systems
(IDS), and access control mechanisms.
Host of Troubles (HoT) Attack. An HoT attack leverages
ambiguous interpretations of HTTP host headers to enable
cache poisoning attacks and security policy bypasses [15].
Unlike HRS attacks, this attack may arise when an attacker can
generate an HTTP request that contains multiple, ambiguous
mechanisms to define the target host, such as multiple Host
headers or a Host header combined with an absolute-URI
in the request-line. Two different HTTP implementations may
accept and understand an ambiguous request differently, which
results in an exploitable semantic inconsistency.
Cache-Poisoned Denial-of-Service (CPDoS) Attack. This
attack exploits semantic gaps to poison web caches with
server-generated error pages, showing that the service is
unavailable. Previous work [36] has introduced three CPDoS
attack variants, HTTP Header Oversize (HHO), HTTP Meta
Character (HMC), and HTTP Method Override (HMO), which
exploit the mismatch of header size limits, meta character
handling, and the method override header respectively.

III. HDIFF: DESIGN AND IMPLEMENTATION

In this section, we first show the key observations before
our design. And we further introduce the architecture of HDiff,
followed by a specific example showing how it works. Then,
we delve into the detailed techniques of all modules, including
Documentation Analyzer and Differential Testing.

A. Key Observations

First, some HTTP implementations do not follow RFC
requirements. Due to the robustness principle [40], many
implementations tend to accept requests that violate RFC
requirements. Besides, HTTP RFC specifications are often
lengthy (e.g., RFC 7230 includes 89 pages in total). It is
difficult for developers to fully understand all RFC specifi-
cations and develop a defect-free protocol processing code.
As network protocols have become more complex, message
processing code becomes more error-prone.

Second, RFC defines optional requirements allowing devel-
opers to use their discretion. For example, RFC documents
often use keywords like MAY, SHOULD, or SHOULD NOT

to specify rules. This flexibility may result in different pref-
erences in implementing rules, which leads to varying HTTP
implementations. The different preference appears harmless
when examining each implementation independently, but may
introduce semantic gap bugs when combining multiple imple-
mentations and lead to drastic security attacks.

Therefore, automatically extracting rules from RFC doc-
uments would be an effective method to find semantic gap
attacks in different protocol implementations. Our research
shows that this process can be semi-automated, with a de-
tection model and an SR seed template as the input.

B. HDiff Overview

Architecture. Figure 3 illustrates the architecture of HDiff,
including Documentation Analyzer and Differential Testing.

Documentation analyzer extracts both syntax rules from
RFC documents, and semantic information based on a series
of NLP-related technologies. More specifically, it extracts a
valid and self-contained ABNF ruleset from RFCs through
regular pattern matching. Meanwhile, it extracts specification
requirements using an SR finder based on sentiment analysis
and transforms SRs to formal expressions via a Text2Rule
converter. This converter is designed based on dependency
parsing and textual entailment techniques. Leveraging these
rules, HDiff would generate test cases through an ABNF gen-
erator and an SR translator. To trigger as many discrepancies
among multiple HTTP servers as possible, HDiff also applies
mutations on valid requests generated from the previous steps.

Then, HDiff utilizes differential testing to discover semantic
gap attacks. It first tests each software independently, and
then compares logs, requests, and responses to identify the
software pairs that behave differently, which indicate potential
vulnerabilities. We introduce the concept of

−−−−−−−→
HMetrics, which

summarizes the observed asymmetries between the behavior
of multiple HTTP implementations. Under different detection
models, users can define detection rules based on

−−−−−−−→
HMetrics

to discover semantic gap attacks.
HDiff is a semi-automatic framework as it requires four

manual tasks for initialization. As shown in Figure 3, a user
needs to provide: 1) SR template sets for Text2Rule converter;
2) SR semantic definition for SR translator; 3) detection

4



Fig. 4: An example showing details of Text2Rule Converter.

models for difference analysis and 4) predefined ABNF rules
to optimize the ABNF generator.
Example. Below, we give an example of detecting HoT
vulnerability to demonstrate how our approach works. As
mentioned earlier, all SRs tend to express a strong sentiment in
emphasizing the importance of a constraint. Thus, HDiff first
selects sentences with a strong sentiment from RFC documents
based on the SR finder, for instance, the sentence shown in
Figure 4c. Then, the Text2Rule converter transforms it into a
dependency tree (Figure 4b). In this tree, the converter can
identify both the target role (server) through the relation
nsubj, and the HTTP fields (status code and Host)
that belong to the field dictionary parsed through ABNF rules.
Then, HDiff analyzes the textual entailment of sentences based
on HTTP fields and SR seed templates. For this sentence, it
tries to infer the following semantics: (1) the status code
is 200/400, and (2) the Host header is valid/invalid/repeat.
Finally, HDiff can get a converted SR (Figure 4c).

Next, the SR translator (Figure 5a) uses the converted SR to
guide test case generation. Note that HDiff can generate basic
HTTP requests with key-value pairs using ABNF rules. For
example, Figure 5b shows some ABNF rules of the Host
header, and Figure 5d illustrates a simple host-value case
with an ABNF tree. The SR translator would mutate the
basic requests based on converted SR semantics, such as case
conversion, special character insertion, and field repetition.

Last, HDiff employs a differential fuzzing strategy to find
semantic gap bugs in different HTTP implementations. In this
example, HDiff can discover inconsistent interpretations of
Host fields among different implementations, which may lead
to an HoT attack.

C. Documentation Analyzer

The module consists of four major components: sentiment-
based SR finder, Text2Rule converter, ABNF rule extractor,
and ABNF rule adaptor. Below, we introduce the basic ideas
and considerations for these components.
Sentiment-based SR Finder. Traditional regular templates or
keyword-based approaches, as proposed by previous studies

Fig. 5: An example showing details of SR Translator.

[34], [37], do not work well when handling RFC documents.
First, RFC documents are described in natural language rather
than formal language, in which the sentences are complex
and flexible in expression. Second, different document authors
may prefer different writing conventions, so it is hard to find
common templates that cover the most SRs.

Despite the diversity of writing styles, we find all SRs tend
to express a strong sentiment in emphasizing the importance of
a constraint, particularly those security-critical constraints. The
more important the SRs are, the more forceful the descriptions
would be. For example, RFC 7230 states “the server MUST
respond with a 400 (Bad Request) status code to any HTTP/1.1
request message that lacks a Host header field”. The word
“MUST” reflects a constraint with the strong sentiment.

Thus, to capture the sentences with potential SRs, HDiff
implements a sentiment-based SR finder based on stanza [41].
This method is better than directly filtering SRs with RFC-
defined keywords [13] (e.g., MUST, SHALL, SHOULD NOT),
since there are still SRs that do not use these keywords,
such as “chunked message is not allowed”, “cannot contain
a message body”, and “ought to be handled as an error”.
Our sentiment analysis module can automatically identify such
strong sentiment sentences with potential SRs.
Text2Rule Converter. Natural language expression is flexible,
and the same semantics can be expressed in multiple forms,
including synonym substitution and grammatical variations
(e.g., passive tense). Therefore, converting an SR to a formal
expression is not easy. To address this problem, HDiff employs
dependency tree analysis and textual entailment (TE) tech-
niques to identify grammatical variations, which can determine
the implication of SR hypotheses.

Figure 4a shows the workflow of this module. First, a user
needs to provide a message description (e.g., “[field-name]
header is [represent/valid/invalid/multiple]”) or a role action
(e.g., “[role] respond [200/302/400] status code”) as an
SR template hypothesis. Among them, the field-name would
automatically adapt to the header name defined in ABNF (i.e.,
the left value in the ABNF expressions). In general, the spec-
ification document would describe the common roles of the
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protocol. In this study, we collect the common 10 role names
from RFC 7230 Section 2.5, such as sender, proxy, server,
intermediary, and cache. Next, we introduce the dependency
tree analysis to identify key messages in a sentence, such as
a target role and HTTP-related fields. Then, HDiff can fill the
seed template to get an SR instance. Last, HDiff performs a
textual entailment analysis to classify sentences into the seed
hypothesis. The detailed textual entailment is shown in Figure
4c. It works like an intelligent question answering system,
which takes the target sentence with potential SR as the
premise and asks whether the sentence implies the hypothesis
(i.e., the SR seed instance provided by the user).

In addition, we also need to overcome other challenges
in this module. First, sentences in RFC are often long and
complex (e.g., with multiple parallel or/and clauses). The
example shown in Figure 4 is simplified from a complex
sentence (with more than 50 words and three co-ordinated
clauses). The accuracy rate cannot be guaranteed for these
sentences by directly applying textual entailment technology.
The parallel semantic information of multiple clauses may also
be lost. To solve this challenge, we first split a sentence into
multiple short clauses based on dependency tree analysis. Then
we perform textual entailment analysis on multiple clauses
respectively, which makes the information derivation complete
and effective. Specifically, we identify the relationship be-
tween different clauses based on Part-of-speech tagging [47].
For example, multiple clauses often are split by words with
parallel lexical properties (i.e., cc, conj). Then, we can
locate the dependency tree contextual relationship and split
a sentence into multiple short clauses based on dependency
tree analysis. Finally, we perform textual entailment analysis
on multiple clauses respectively, which makes the information
derivation complete and effective.

Second, the textual entailment of cross-sentence structures
needs to be considered. Some phrases in RFCs have ref-
erential relationships between multiple sentences, such as
“this message”, “such request”, “such URI”. HDiff needs to
identify its implicit references for these phrases to recover the
original semantics between multiple sentences. To address this
challenge, we try to eliminate anaphora using existing tools,
such as AllenNLP [25] and NeuralCoref [7]. Unfortunately,
none of such techniques can address subtle implicit references.
We observe that these cross-sentence referential cases are
much simpler in RFC documents than in the case considered in
natural language. A referent phrase (e.g, “such request”) can
often find its referred clause in adjacent sentences (e.g., “a
request is ...”). And no iterative referential relationships have
been found to exist, i.e., the referred sentences include more
referential relationships. Therefore, we implemented a simple
forward search algorithm based on keyword fuzzy matching to
search forward (up to 5) sentences to find the referred clause.
Then, HDiff would merge the two sentences into a complex
multi-clause sentence for textual entailment analysis when the
referred clause is found.
ABNF Rule Extractor. Most RFCs use ABNF to describe for-
mal specifications, which can describe the syntax of parsable

structures. Therefore, we extract valid ABNF grammar from
RFC to generate test cases and run differential testing. We
use the following two steps to automatically export ABNF
rules. First, HDiff collects all relevant RFC documents (RFC
7230-7235) through a datatracker tool [27]. Second, we im-
plemented an ABNF filter based on format features to heuris-
tically extract ABNF grammar in RFCs, including character
cleaning, regular extraction, case escaping, and separating
prose rules.
ABNF Rule Adaption. ABNF rules from different documents
require certain automatic adaptation to obtain the final com-
plete and error-free grammar set. To optimize ABNF rules,
we use the techniques including replacing rule names with
case–insensitive rule names, replacing invalid rule definitions
with customized rules, and namespacing transformations for
rules with the same name in different RFCs. More specifically,
HDiff will use the most recent RFCs for repeated rule names.
One challenge is that some missing rules are referenced but
not defined. For example, rule A references rules B and C,
but rule C is not defined. This could happen if a rule is
defined as prose, defined in a referenced document, or in
the surrounding textual description. If a rule is referenced
from another RFC, HDiff will expand the ABNF rules of
the referenced RFC. For example, RFC 7230 [44] contains
an angle-bracket notation for prose descriptions, “<host,
see [RFC3986], Section 3.2.2>”. When encounter-
ing such rules, the program would automatically expand the
ABNF rule set from the new RFC 3986 [11] document.

D. Differential Testing

HDiff utilizes an ABNF generator and an SR translator to
generate test cases that are prone to semantic gap attacks.
Then, it conducts a difference analysis on target HTTP im-
plementations to discover vulnerable HTTP implementations.
ABNF Generator. HDiff includes a test case generator based
on Python code, which is designed to generate numerous
test cases directly from ABNF grammar. The approach is
to recognize that ABNF defines a tree with seven types of
nodes (e.g., alternation, option, concatenation, literal) and that
each node represents an operation that can guide a depth-first
traversal of the tree.

Specifically, HDiff first parses the ABNF grammar into an
ABNF syntax tree. Then, HDiff would locate the target node
(e.g., HTTP-message, HTTP-version) as the start node,
and traverse the ABNF syntax tree recursively downwards.
Among them, the leaf node (e.g., string literals, num literals)
is the termination node.

The test cases generated directly based on the original
ABNF syntax tree are often too distorted and easy to be
directly rejected by the target server. For example, a valid
ABNF Host header (Host:\t!VAA2.:=’i:22). Due to its
high degree of distortion, it is often easily rejected by the
HTTP server. We address this problem in two steps. First, the
ABNF grammar has variable repetition rules (e.g., n*nRule),
which can theoretically generate an infinite depth of traversal
subtrees. However, exhaustive depth traversal for this type of
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grammar is meaningless. Therefore, we limit the recursion
depth of ABNF syntax tree traversal (e.g., maximum 7). Sec-
ond, we loaded some predefined rules to reduce the generation
of invalid strings, which can specify a certain value of leaf
nodes for our empirical experiment purposes. For example,
the Host header can consist of IPv4address. HDiff does
not need to test all IPv4 addresses, only representative ones,
such as 127.0.0.1 and 8.8.8.8. In this way, we can
generate basic HTTP requests that are fully RFC compliant
and not be rejected by the server. These requests would be
used as seeds for the SR translator.

To trigger possible processing discrepancies between differ-
ent HTTP servers, HDiff also introduces common mutations
on the valid requests, such as header repeating, inserting Uni-
code characters, header encoding, and case variation. Through
these ways, HDiff can explore the processing of the corner
case. We only apply several rounds of mutations to each test
case so that the changes make a small impact on the format.
It can avoid mutated requests to the degree that they are
unrecognizable by the servers.
SR Translator. The SR translator would translate the SR
previously extracted in the documentation analyzer module
into test cases with assertions. If the protocol implementation
violates the assertion in the testing phase, we believe that the
target implementation violates the specification.

At this stage, we need to manually input SR semantic
definitions to help translate SR into test cases. We defined
a series of message descriptions (e.g., valid, invalid, repeat,
empty, too long) and role actions (e.g., close connection,
report error, respond 200 status code, not forward request).
The former is used for automatically generating test cases,
and the latter is for determining subsequent difference tests.

For example, when we extract an SR with a message format
described as “including an invalid Host header”, HDiff will
first generate a series of host headers that match the ABNF
rules and then mutate the original ABNF syntax tree to
generate malformed host data.

While these tasks require manual effort, the key observation
is that these semantics are limited and enumerable. The de-
scription of the message format has only limited relationships
(e.g., field order, field values, field restrictions), and the server
behavior is also limited (e.g., accept/reject/forward/rewrite
requests, close/hold connections). Therefore, this manual work
is worth the effort, considering the positive implications for
subsequent vulnerabilities discovered.
Difference Analysis. For difference analysis, our key idea is
that simultaneously testing multiple HTTP implementations
on the same input offers a wide range of information that can
be used to compare the tested programs’ behaviors relative
to each other. Such examples include error messages, debug
logs, rendered outputs, return values, observed execution paths
of each HTTP implementation, etc. Semantic gap bugs across
different HTTP implementations are more likely for the inputs
that cause relative features like the above across multiple test
implementations.

Semantic Metrics. To analyze and evaluate testing results

conveniently, we define an n-dimension vector
−−−−−−−→
HMetrics for

the server behavior of each request:−−−−−−−→
HMetrics = ⟨uuid, status code, host, data, ...⟩
Here, the uuid is a unique number for each request, and

the status code is the response status code from HTTP imple-
mentation. The host represents the parsing result of the Host
field in the request, and the data is the request body. Users
can also define much other semantic information (e.g., HTTP-
version, method) related to HTTP protocol for discovering
semantic gap bugs. This semantic information can be observed
in various ways, including response data, error messages, and
system logs.

Detecting Bugs. Under different detection models, users
can define different detection rules based on

−−−−−−−→
HMetrics to

discover semantic gap attacks. For example, for the HoT
attack, the middleboxes need to forward ambiguous requests
(although the middleboxes may modify the request to some
extent). In addition, the Host value interpreted by the mid-
dleboxes is different from the backend server. At this point,
HDiff would output the test case as a potential exploit together
with the description of the vulnerability discovered. Then, we
further run these potential exploits to complete verification in
a real environment.

IV. EXPERIMENTS AND FINDINGS

A. Experiment Setup

Tested HTTP Implementation. To evaluate HDiff, we sys-
tematically analyze 10 popular web servers and proxies, which
are high in market shares and deployment rates [4], [5].
We believe their security issues can expose a wide range
of common users to threats. Table I shows the tested HTTP
implementations and their versions.
Experiment Platform Setup. We conducted the experiments
on two kinds of virtual machines, Ubuntu 16.04.2 LTS
(GNU/Linux 4.4.0-62-generic x86 64) and Microsoft Win-
dows Server 2019 x64. Both are configured with one core of an
Intel Core i7-4790 CPU (3.60GHz) and 8 GB RAM. Except
for the Internet Information Services (IIS) service tested on
Windows Server, other services are tested on Ubuntu. For
accuracy, each version of HTTP implementation is tested in a
different virtual machine.

Fig. 6: The test workflow.
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TABLE I: Tested HTTP implementations and vulnerability.

Working Mode VulnerabilityProduct Version Server Proxy HRS HoT CPDoS

IIS1 10 Yes ✓ ✓ –
Tomcat 9.0.29 Yes ✓ ✓ –

Weblogic 12.2.1.4.0 Yes ✓ ✓ –
Lighttpd 1.4.58 Yes ✓ –
Apache 2.4.47 Yes Yes ✓

Nginx 1.21.0 Yes Yes ✓ ✓
Varnish 6.5.1 Yes ✓ ✓ ✓

Squid 5.0.6 Yes ✓ ✓
Haproxy 2.4.0 Yes ✓ ✓ ✓

ATS2 8.0.5 Yes ✓ ✓

1 The abbreviation IIS stands for the Internet Information Service.
2 The abbreviation ATS stands for the Apache Traffic Server.
3 ✓: The target product is vulnerable.
4 – : We do not consider the vulnerability to CPDoS in server mode.

Test Workflow. The test environment includes one client, one
echo server, six proxy (front-end) servers, and six back-end
servers. We show a simple schematic diagram in Figure 6.

HDiff automatically generates HTTP requests via the SR
translator and the ABNF generator and associates each request
with a UUID. The client uses multiple processes to send these
test cases to target HTTP implementations (i.e., proxy servers
and back-end servers). We directly perform low-level network
programming (e.g., raw socket) to reduce confusion during
packet parsing from our test tool. All proxies run in reverse-
proxy mode; they receive requests and forward them to our
echo server. Echo servers would record the forwarded requests
for subsequent replay analysis. Besides, each back-end server
would feedback on its interpretation of HTTP requests through
application scripting languages, such as PHP, and ASPX.
Besides, in the combined analysis, all proxies are configured
to cache any returned response, such as the response of a non-
200 status code, the HTTP version is smaller than 1.1.

Specifically, we collect three types of data for difference
analysis: (1). Proxy logs that consist of status code, host, uri,
and other information parsed by the proxy; (2). Echo server
logs that record the requests forwarded by proxies; (3). Echo
information and logs of back-end servers, which show the
parsing results from the end servers.

Since semantic gap attacks are caused by inconsistent
behaviors between the actual application logic and the in-
termediaries, we adopt a behavior-oriented methodology to
detect HTTP message processing chains. The workflow can
be divided into three steps.

Step 1: The client sends the test case to the proxy, and the
proxy automatically forwards the request to the echo server.
We can learn how the proxy handles requests through this
step, such as forwarding a malformed header or multiple Host
headers.

Step 2: HDiff replays the forwarded request to each back-
end server. Note that HDiff would reduce the number of replay
tests through a series of rules and heuristics to improve fuzzing
efficiency. For example, it only replays the forwarded request
of which the proxy processing status code is 200 and that

TABLE II: Examples of semantic gap attacks found by HDiff.

contains ambiguous data. Through this step, we can simulate
the actual environment of multiple agents and servers in series
without building many test environments, which significantly
reduces the test workload.

Step 3: HDiff also sends test samples directly to the back-
end server to test its understanding and behavior.

By analyzing steps 1 and 3, HDiff can determine whether
the tested proxy and server follow RFC specifications, other-
wise, they can cause security issues like semantic gap attacks.
By combining steps 1 and 2, HDiff can perform a front-end
and back-end combination analysis to find exploitable server
pairs.
Ethical Considerations. We take almost care to prevent
ethical problems in our experiments. First, this study was
conducted within a local experimental environment, and no
real users or external servers were affected by our experiment.
Second, we followed the established coordinated disclosure
best practices. Vulnerabilities found in this work have already
been reported to all relevant HTTP software vendors.

B. Findings

In our experiment, we mainly analyzed the core specifica-
tions of HTTP 1.1 (RFC 7230-7235) [22]–[24], [30], [43],
[44], including 172,088 words and 5,995 valid sentences. In
total, HDiff reported 117 specification requirements (SRs) and
269 ABNF grammar rules and generated 8,427 test cases with
assertions based on the SR translator and 92,658 test cases
based on the ABNF generator.

Then, HDiff further found a number of (more than 100)
violations of SRs and discrepancies in different HTTP imple-
mentations. Finally, we verify the exploitability of the results
and confirm that suspected vulnerable HTTP implementation
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pairs are behind each other. Table I shows the vulnerability
of each implementation. All three attacks (HoT, HRS, and
CPDoS) have successful attack payloads. We briefly show
some of the discovered vulnerabilities in Table II. Among
these vulnerabilities, we also discovered three new attack
vectors that have not been discussed in previous work.

In addition, we also performed a front-end and back-end
combination analysis that we believe has some real-world
deployment. Figure 7 summarizes our results, showing the
affected server pairs we found. Note that some vulnerabilities
may not be applied in these server pairs, but it does not rule out
they are not exploitable in the real world. These vulnerabilities
may lead to exploitable attacks when chained with other HTTP
implementations, such as using CDN as a front-end server.

Fig. 7: Server pairs affected by three types of attacks.

HTTP Request Smuggling (HRS) Attack. We have discov-
ered eight different types of HRS attack payloads. In this pa-
per, we only introduce four representative examples. For con-
venience, we use the abbreviation CL for Content-Length
and TE for Transfer-Encoding.

Invalid CL/TE header. Some HTTP implementations (e.g.,
IIS, ATS, Weblogic) are compatible and accept requests
that violate the RFC definition for robustness considera-
tions. RFC 7230 [44] clearly states that the whitespace
between field-name and colon is not allowed, such as
Content-length[whitespace]: 10. However, the IIS
server is compatible with this request type and parses the
body data. This improper behavior can cause inconsistencies
between proxies and servers, leading to the HRS attack.

Multiple CL/TE headers. According to RFC 7230 [44],
the recipient must reject the message with multiple CL/TE
or replace the duplicated field-values with a single valid
value. In our experiments, the traditional multiple headers
have been rejected by the HTTP implementations. However,
many HTTP implementations became vulnerable when HDiff
made a slight mutation (e.g., special character insertion) based
on the ABNF generator on the CL/TE headers. A typical
example is that Tomcat will accept requests with both CL

and TE headers, where the TE header is malformed data
(i.e., Transfer-Encoding:\x0bchunked). This type of
request may be interpreted inconsistently in other HTTP
implementations, further leading to the HRS attack.

HTTP Version 1.0 with TE chunked. The TE header was first
introduced in HTTP version 1.1 [44]. So a request with version
1.0 and a TE header should be accepted, but the TE header
should be ignored and not interpreted. In the experiments,
Tomcat does not support chunked encoding in HTTP version
1.0, while other HTTP implementations support it. This in-
consistent behavior can also lead to HRS vulnerabilities.

Bad chunk-size value. Almost all proxies would attempt
to recover a usable protocol element from an invalid con-
struct. However, the proper error handling mechanism is not
easy. Attackers can abuse improper error handling mecha-
nisms to launch attacks. The attacker can construct an il-
legal chunk-data to deceive the message correction mecha-
nism and make the repaired data still contain semantically
ambiguous data. For example, attackers can make chunk-
size mismatches with chunk-body, a big number in chunk-
size, or control/Unicode characters in chunk-body. In our
experiment, two proxies (i.e., Haproxy, Squid) would try to
repair the request with a malformed chunk-data, such as [big
number]\r\nabc\r\n0\r\n. The correct behavior should
repair a big number to 3 (the length of ‘abc‘), but they repair
to an illegal number a (10 in decimal), which may be due
to integer overflow issues. This incorrect repair behavior can
cause an HRS attack.
Host of Trouble (HoT) Attack. Many HTTP implementations
have fixed the attacks before [15]. However, we generated
more test cases through the ABNF mutation generator. Below,
we show two types of effective attack vectors.

Bad absolute-URI vs Host header. HTTP allows a client
to send absolute-URI as request-target, which contains
a host component. The inconsistent interpreting between
absolute-URI and Host is easy to cause the HoT attack.
To mitigate this attack, many proxies rewrite the absolute-
URI to its path and add a Host header when forwarding.
However, we found varnish does not rewrite the Host header
if the absolute-URI is started with a non HTTP schema. It
recognizes the host from the Host header and forwards such
requests transparently. When IIS and Tomcat receive such
requests, they recognize the host from absolute-URI. This
inconsistent understanding of host between the proxy and
server would lead to the HoT attack. In addition, Haproxy
would transparently forward a request with HTTP schema
absolute-URI and no Host header. This may also lead to the
HoT attack.

Invalid Host header. Based on ABNF mutation generator,
we can generate a large number of hostnames with slight
distortion, such as ‘h1.com@h2.com’, ‘h1.com,h2.com’,
‘h1.com/../h2.com’. When a proxy transparently for-
wards such an ambiguous hostname, it is also easy to cause
the HoT attack. The front-end proxy might recognize the
h1.com, while the back-end server recognizes the h2.com.
Three proxies (i.e., varnish, haproxy, squid) would forward
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such requests without modification.
Cache-Poisoned Denial-of-Service (CPDoS) Attack. The
CPDoS attack is the most easily triggered semantic gap attack.
In this work, we found 11 different kinds of CPDoS attack
payloads (some examples are shown in Table II).

Invalid HTTP-version. As mentioned earlier, proxies imple-
ment the message correction mechanism. Incorrect message
correction can also be abused to launch a CPDoS attack.
Three proxies (i.e., Nginx, Squid, ATS) would try to repair the
request with invalid version (e.g., 1.1/HTTP, HTTP/3-2).
They do not delete the old illegal HTTP version but directly
add their own HTTP version in the request line. This makes
the forwarded request line become GET /?a=b 1.1/HTTP
HTTP/1.0, which also may cause errors on the backend
server and further lead to a CPDoS attack.

Blindly forwarding lower/higher HTTP-version. RFC 7230
[44] requires that all intermediaries (other than acting as tun-
nels) must forward their own HTTP version instead of blindly
forwarding requests. However, Haproxy would transparently
forward the HTTP/0.9 message with request headers, result-
ing in a CPDoS attack. Only the Weblogic server can handle
this message and respond with a 200 status code, while the
rest servers report errors.

Blindly forwarding Expect header in GET request. The
Expect header field in a PUT request indicates a certain set
of behaviors (expectations) that need to be supported by the
server to handle this request properly. However, it may cause
a CPDoS or HRS attack when employed in a GET request.
In our experiment, ATS would transparently forward such
requests. And Lighttpd would direct reject such a message.
As a result, it will cause a CPDoS attack if chained together.

Fat HEAD/GET request. In this scenario, the body is used
in the GET request, and the length of the body is indicated by
a CL header. This request is automatically generated based on
the ABNF grammar. Since the RFC does not strictly explain
how the server should handle it, most HTTP implementations
loosely handle the GET request with body data. There will
also be some implementations that directly consider this type
of request to be illegal. As a result, different HTTP implemen-
tations would have an inconsistent semantic understanding of
such requests, which may also cause HRS and CPDoS attacks.

V. DISCUSSION

Limitations. We only tested HTTP implementations in their
default configurations in the experiments and may not find
all those bugs because configurations may vary in the wild.
For example, some researchers [2] exploited the CPDoS or
HRS attack with the forwarded header (e.g., X-Original-URL,
X-Forwarded-Host, X-Forwarded-For). But our experimental
environment does not support these headers, and we cannot
find such attack vectors. In addition, there are numerous
HTTP implementation combinations in real-world deployment
(e.g., different types of products, versions, configurations).
Generally, the front server can be a cache, proxy, firewall,
or CDN, while the end server can be another proxy, CDN,
or server. Our experiment only tested the scenario where

the proxy is the front-end server, and the HTTP server is
the back-end server. Therefore, some combinations that cause
potential semantic gap attacks may not be covered in our
environment. Besides, HDiff is a semi-automatic framework,
which still requires four human tasks for building HDiff, i.e., a
series of SR template sets, SR semantic definitions, detection
models, and predefined ABNF rules. These limitations render
our system less effective in discovering new semantic gap
attacks. Additionally, when migrating this approach to other
protocols, these initial investments also need to be completed
as a cost.
Cost and Benefit. HDiff is a semi-automatic framework
involving some manual tasks. As described in Section III,
these manual tasks are limited, enumerable, and acceptable
(e.g., less than 8h throughout our work). In addition, these
manual tasks are one-time jobs, which can be reused for testing
multiple versions of the HTTP specifications. By automatically
extracting rules from HTTP specifications, HDiff can check
and determine whether an implementation conformed with
or violated specific RFC rules. This helps fix bugs in HTTP
implementations. Besides, once the tool is developed, we can
reuse the test cases for discovering vulnerabilities in more
implementations. And the tool can be run periodically to
prevent new vulnerabilities introduced by software updates.
Thus, in the long run, we believe the tool will have a good
return on investment.
Future Research. More automated and intelligent security
test based on specification analysis is worth exploring. Our
study on HDiff has made the first step toward this end, but its
application just scratched the surface of a large problem space
such a technique can make inroads into. HDiff still requires a
part of manual tasks to assist in testing, and more automated
differential testing techniques are worth exploring.

RFC specifications standardize many communication pro-
tocols (e.g., SIP, SMTP, TLS). A good way is to extend our
methodology to different protocols and systematically discover
semantic gap attacks. Chen et al. [16] conducted an empirical
security analysis to find semantic gap attacks bypassing the
email security mechanisms. Practical exploration is to apply
our framework to the email domain to find this kind of
semantic gap attack. Besides, semantic inconsistency between
multi-version protocols is an interesting issue. It has been
shown, e.g., that a client can cause various types of denial-
of-service attacks in cases where an intermediary supports
HTTP/2 while the webserver uses HTTP/1.1 [28]. Thus, it
is also valuable to expand our work to the HTTP 2.0 version.

VI. DISCLOSURE AND RESPONSE

All vulnerabilities have been reported to related HTTP soft-
ware vendors before this paper was submitted. And all vendors
would have about six months to implement mitigation tech-
niques. Some vendors quickly confirmed the vulnerabilities
and have indeed fixed the vulnerabilities, such as Tomcat, and
Weblogic. 7 new CVEs have been assigned to the immediately
exploitable ones among the vulnerabilities discovered. Our
contact results are summarized as follows.
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Tomcat: They acknowledged our report and particularly
thanked us for reporting the issue of HRS attacks. And
two CVEs (CVE-2019-17569, CVE-2020-1935) for publicly
known information-security vulnerabilities and exposures.
Internet Information Services (IIS): They accepted our re-
port and confirmed the vulnerability (CVE-2020-0645). They
contacted us and had an in-depth discussion with us about the
specifications. They mention that for robustness, proxies may
not follow strict RFC guidance when processing malformed
requests. Now they strictly process the headers related to HRS
attacks for security reasons.
Weblogic: They discussed with us the details of the attacks
and their potential consequences. They viewed it as indeed a
problem for the HTTP software vendors and actively contacted
us to discuss how to defend against it. They also allocated
three CVEs (CVE-2020-2867, CVE-2020-14588, CVE-2020-
14589) for these vulnerabilities we found.
Apache Traffic Server (ATS): They evaluated the issue as a
critical vulnerability (CVE-2020-1944). At first, they believe
that the transparent forwarding of repeated headers should not
cause security problems. They have now recognized the risk
of transparently forwarding repeated Transfer-Encoding
headers and fixed the vulnerabilities.
Haproxy: They appreciated our work and discussed the vul-
nerabilities with us in detail. They mentioned that most proxies
or gateways deal with HTTP requests in non-RFC ways. They
recognize that semantic gap attacks are a severe threat and
have done some work to defend against such attacks, such
as not cached if the HTTP version is smaller than 1.1 or the
response status code is not 200.
Others: We have contacted other relevant HTTP software
vendors and are looking forward to receiving their feedback.

VII. RELATED WORK

Semantic Gap Attack. In recent years, there have been
several works about semantic gap attacks, such as evasion
attacks against security software [9], bypassing email security
mechanisms [16], [45], inconsistent interpretations between
different SSL/TLS [42], [46] or HTTP [28], [32], [36] im-
plementations. Gil et al. [26] introduced the Web Cache
Deception (WCD) attack, which aims to disclose sensitive
information with the help of caches. These previous works
demonstrated that semantic gap attacks had been a big threat to
the Internet, yet most vulnerabilities are still found by manual
analysis, which heavily relies on human experiences and is
not scalable. The latest work, T-Reqs [29], uses differential
testing to discover HRS attacks and generates test cases based
on manually defined context-free grammar (CFG). Unlike his
work, our work applies NLP-based techniques to extract RFC
rules and constructs test cases to reduce human efforts. Using
this approach, we explored three types of semantic attacks
instead of a single HRS attack.

Differential Testing Previous works [18], [29], [48] have
proved that differential testing is an effective way to discover
semantic gap attacks. Among them, Nezha [39] uses differ-

ential testing to find semantic gap bugs in SSL/TLS imple-
mentations. However, a discrepancy in traditional differential
testing is neither why it occurs nor which implementations
go wrong. By contrast, HDiff can determine whether a dis-
crepancy conforms with RFC and quickly locate the root
causes. In addition, traditional differential testing requires at
least two HTTP implementations. Otherwise, it cannot find
any discrepancy. HDiff can test a single implementation by
checking whether

−−−−−−−→
HMetrics matches the assertion from SRs.

Document Analysis for Security. Numerous studies lever-
aging text analysis techniques to automatically discover var-
ious kinds of bugs in diverse domains like SSL/TLS imple-
mentations [20], cellular networks [17], API Misuse Detection
[34]. Chen et al. [17] implemented a framework that automat-
ically discovers vulnerabilities using the guidance from the
LTE documentation. Blasi et al. [12] generate the test oracle
from documentation to dynamically find the inconsistency
between documentation and code implementation. Different
from previous works, our research provides a systematic
framework to discover a wide variety of semantic gap attacks
in HTTP protocol, including HTTP Request Smuggling, Host-
of-Trouble, and Cache-Poisoned Denial-of-Service attack.

VIII. CONCLUSION

Various semantic gap attacks have been discovered in recent
years, which have become a severe threat in web-based layered
software systems with multiple intermediaries. However, most
of these attacks have been found through ad-hoc manual
analysis, which is inadequate for fundamentally enhancing
the security assurance of a system as complex as the HTTP
network. Our research developed HDiff, a novel detecting
framework to discover semantic gap attacks in HTTP imple-
mentations from RFC specifications. HDiff employs a suite of
NLP primitives to extract the syntax and semantic information
in RFCs. It further constructs test cases based on ABNF
and SR rules, and runs differential testing to systematically
discover semantic gap attacks.

Running HDiff on the HTTP 1.1 core specifications, we dis-
covered 14 vulnerabilities covering all three types of attacks,
including three new attacks vectors never reported before in
previous work. All of them have been duly reported to the
involved HTTP software vendors. And 7 new CVEs have been
assigned to the immediately exploitable ones. With its efficacy
demonstrated on HTTP protocols under three attack models,
we believe that the HDiff framework has great potential to be
applied to other protocols for detecting semantic gap attacks.
We hope this work can inspire the community to discover and
eliminate semantic gap attacks in other areas.
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