
HDiff: A Semi-automatic Framework for Discovering
Semantic Gap Attack in HTTP Implementations

Kaiwen Shen, Jianyu Lu, Yaru Yang, Jianjun Chen,
Mingming Zhang, Haixin Duan, Jia Zhang, Xiaofeng Zheng

DSN 2022 - June 28, 2022

Delegated Presenter : Shuai Hao

❖ Middleboxes: intermediate devices deployed for security or

performance benefits (e.g., firewall, cache proxy, and CDN).

❖ Different middleboxes may interpret messages differently, causing

semantic gaps.

Middleboxes are widely deployed with semantic gaps

Client Firewall

Cache

Cache Proxy CDN Server

Middlebox

An end-to-end HTTP request is processed by multiple middleboxes.

POST / HTTP/1.1
Host: example.com
Content-Length: 43
Transfer-Encoding: chunked
0

GET /admin HTTP/1.1
Malicious-Header: value

Back-end Server

A Case Study for Semantic Gap Attack

Semantic gap in parsing more than one Content-Length or
Transfer-Encoding header fields to smuggle a hidden request

Bypass Front-end Security Controls Exploit Reflected XSS Web Cache Poisoning

Front-end Server

POST / HTTP/1.1
Host: example.com
Content-Length: 43
Transfer-Encoding: chunked

0

GET /admin HTTP/1.1
Malicious-Header: value

HTTP Request Smuggling

Attacker

The smuggled
malicious request

❖ Semantic Gap Attack: Inconsistent Interpretation of an Ambiguous HTTP Request

Ø Host of Troubles [CCS’16]

Ø HTTP Request Smuggling [BHUSA’19]

Ø Cache-Poisoned Denial-of-Service Attack [CCS’19]

Semantic Gap Attack: a Serious Threat to the Internet

Client Firewall

Cache

Cache Proxy CDN Server

Firewall Bypass Cache Poisoning DoS Attack

Most previous studies relied on fully manual analysis

How to automatically discover semantic gap attacks

The Root Causes of Semantic Gap Attacks
❖ Implementations not following RFCs:

Ø Intended relaxation for robustness principle

Ø Programming mistakes due to the misunderstanding of RFCs

Be conservative in what you send, be liberal in what you accept.
- Robustness Principle

❖ Different implementations of optional requirements:
Ø RFC defines optional requirements allowing developers to use their discretion

HDiff: a Semi-automatic Testing Framework
New Detecting Framework: Discovering semantic gaps with RFC-directed
differential testing

RFCs Differential
Testing

Bugs

R
T

Documentation
Analyzer

NLP

Ø Syntax Rule: ABNF Grammar

ABNF rules defining HTTP grammar from RFC 7230.

HTTP
Implementations

HDiff: a Semi-automatic Testing Framework
New Detecting Framework: Discovering semantic gaps with RFC-directed
differential testing

Ø Syntax Rule: ABNF Grammar
Ø Semantic Rule: Specification Requirements

An example of Specification Requirement (SR)

• Informal descriptions to define HTTP semantic actions

• Guide developers to implement the protocol correctly

and ensure security

If a Transfer-Encoding header field is present in a request
and the chunked transfer coding is not the final encoding,
the server MUST respond with the 400 (Bad Request)
status code and then close the connection.

- RFC 7230

RFCs Differential
Testing

Bugs

R
T

Documentation
Analyzer

NLP

HTTP
Implementations

HDiff: a Semi-automatic Testing Framework
New Detecting Framework: Discovering semantic gaps with RFC-directed
differential testing

Ø Semantic Metrics: 𝐻𝑀𝑒𝑡𝑟𝑖𝑐𝑠=⟨𝑢𝑢𝑖𝑑, 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐𝑜𝑑𝑒, ℎ𝑜𝑠𝑡, 𝑑𝑎𝑡𝑎, ...⟩

Ø Detecting Bugs: users can define different detection rules based on HMetrics

to discover semantic gap attacks.

Differential Testing

RFCs Differential
Testing

Bugs

R
T

Documentation
Analyzer

NLP

HTTP
Implementations

HDiff: Design and Implementation

RFCs

Documentation Analyzer

ABNF rule adaptionABNF rule extractor

Differential Testing

Text2Rule converterSR finder
Difference analysis

log,
req, res

Bugs
HTTP implementations

SR

Request
SR translator

ABNF generator

User

SR
template

Detection modelSR semantic definition

predefined
ABNF rules

The Architecture of HDiff

❖ Documentation Analyzer :
Ø Using NLP techniques to extract

rules from RFCs

❖ Differential Testing :
Ø Utilizing differential testing to

discover semantic gap attacks

An End-to-End Example for
HTTP Request Smuggling Attack

Research Challenges for Documentation Analyzer

Ø Manually extracting SRs needs significant human efforts and is error-prone:

❖ Automatic extraction of Specification Requirements (SR) from RFC is not easy

Ø HTTP RFC specifications are lengthy (RFC 7230 includes 89 pages in total)

Ø RFC documents are described in natural language rather than formal

language, in which the sentences are complex and flexible in expression.

Ø The same semantics can be expressed in multiple forms, including

synonym substitution and grammatical variations (e.g., passive tense)

Ø Traditional regular templates or keyword-based approaches do not work well

Step 1: Sentiment-based Specification Requirement Finder

❖ Key Observation:
Ø All SRs are characterized by a strong sentiment to stress the constraints

If a Transfer-Encoding header field is present in a request and the chunked transfer coding
is not the final encoding, the server MUST respond with the 400 (Bad Request) status
code and then close the connection.

- RFC 7230

An example of Specification Requirement (SR)

❖ Sentiment-based Specification Requirement Finder:
Ø Automatically identify strong sentiment sentences with potential SRs

RFC Documents SR Finder Specification Requirements

Step 2: Text2Rule Converter
❖ Key Observation: All specification requirements tend to follow a specific semantic structure

Ø A message description: [field-name] header is [represent/valid/invalid/multiple]
Ø A role action: [role] respond [200/302/400] status code

If a Transfer-Encoding header field is present in a request and the chunked transfer coding
is not the final encoding, the server MUST respond with the 400 (Bad Request) status
code and then close the connection.

- RFC 7230

❖ Dependency Tree Analysis:

a Transfer-Encoding header field is present in a request and the chunked
transfer coding is not the final encoding

Message
Description

the server MUST respond with the 400 (Bad Request) status code and
then close the connection.

Role
Action

Step 2: Text2Rule Converter

❖ Part-of-speech tagging:

a Transfer-Encoding header field is present in a request and the chunked
transfer coding is not the final encoding

Message
Description

NN

Dictionary of
Header Names

Transfer-Encoding
Transfer-codingKey Messages

The header names
defined in ABNF rules The extracted field-name

❖ Key Observation: All specification requirements tend to follow a specific semantic structure
Ø A message description: [field-name] header is [represent/valid/invalid/multiple]
Ø A role action: [role] respond [200/302/400] status code

Step 2: Text2Rule Converter

❖ Textual Entailment Analysis:
a Transfer-Encoding header field is present in a request and the chunked
transfer coding is not the final encoding

Message
Description

Q1: Transfer-Encoding header is represent ?
Q2: Transfer-Encoding header is not represent ?
Q3: Transfer-Encoding header is valid ?
Q4: Transfer coding header is the final encoding ?
Q5: Transfer coding header is not the final encoding ?
……

Yes
No
No
No

Yes

❖ Key Observation: All specification requirements tend to follow a specific semantic structure
Ø A message description: [field-name] header is [represent/valid/invalid/multiple]
Ø A role action: [role] respond [200/302/400] status code

Specification
Requirement Template

Step 2: Text2Rule Converter
❖ Key Observation: All specification requirements tend to follow a specific semantic structure

Ø A message description: [field-name] header is [represent/valid/invalid/multiple]
Ø A role action: [role] respond [200/302/400] status code

❖ Textual Entailment Analysis:

Q1: Server respond 200 status code ?
Q2: Server respond 302 status code?
Q3: Server respond 400 status code?
Q4: Server respond 403 status code?
Q5: Server respond 500 status code?
……

No
No

Yes
No
No

The server MUST respond with the 400 (Bad Request) status code and then
close the connection.

Role
Action

Specification
Requirement Template

Step 2: Text2Rule Converter

❖ Text2Rule Converter:
If a Transfer-Encoding header field is present in a request and the chunked transfer coding is
not the final encoding, the server MUST respond with the 400 (Bad Request) status code and
then close the connection.

- RFC 7230

Role: Server
Message: Transfer-Encoding: present, transfer coding: not final
Assertion: Status_code: 400

Text2Rule Converter The Converted Specification Requirement (SR)

❖ Key Observation: All specification requirements tend to follow a specific semantic structure
Ø A message description: [field-name] header is [represent/valid/invalid/multiple]
Ø A role action: [role] respond [200/302/400] status code

Research Challenges for Differential Testing
❖ Generating efficient test cases is not easy:

❖ Too distorted test cases are easy to be rejected by the target server
❖ Randomly generated test cases are not efficient

❖ Semantic gap bugs are hard to detect：
Ø No explicitly erroneous behavior, like crashes or memory corruption

Application Crashes Memory Corruption

Step 3: Specification Requirement Translator

converted SRABNF rules

ABNF generator

Basic Requests

SR semantics

Mutation

Test cases

The Workflow of SR translator

❖ SR Translator:
Ø Translate the converted specification requirement into test cases with assertions

Role: Server
Message: Transfer-Encoding: present, transfer coding: not final
Assertion: Status_code: 400

The Converted SR

An example of Test Cases

Assertion: Status_code: 400

Step 4: Difference Analysis

The Test Workflow

❖ Utilizing difference analysis to discover semantic gap attacks:
❖ Semantic Metrics: 𝐻𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = ⟨𝑢𝑢𝑖𝑑, 𝑠𝑡𝑎𝑡𝑢𝑠_𝑐𝑜𝑑𝑒, ℎ𝑜𝑠𝑡, 𝑑𝑎𝑡𝑎, ...⟩

Assertion: status_code : 400

HTTP Implementations

Status_code : 200
violating the assertion

CVE-2020-14589：
HTTP Request Smuggling

user
check

Findings & Summary

Experiments and Findings
❖ Extracting 117 specification requirements and 269 ABNF rules from the HTTP

1.1 core specifications (RFC 7230-7235)
❖ Evaluating the effectiveness of discovering three representative semantic gap

attacks in 10 popular HTTP implementations
Ø Host of Troubles [CCS’16]
Ø HTTP Request Smuggling [BHUSA’19]
Ø Cache-Poisoned Denial-of-Service Attack [CCS’19]

Experiments and Findings
❖ Found 14 vulnerabilities, including three new types of attack payloads.

Case Study: the inconsistent processing of Expect header leading to the CPDoS attack

Attacker Front-end Server Back-end Server

forward
 request

normal
request

malicious
request

Hit the polluted
cache resource

GET /?id=1 HTTP/1.1
Host: example.com
Expect: 100-continue

HTTP/1.1 400 Bad Request
Content-Type: text/html;
….

storage malicious
Cache resources.

HTTP Response

victim
GET /?id=1 HTTP/1.1
Host: example.com
…

return the malicious response,
leading to the CPDoS attack

HTTP/1.1 400 Bad Request
Content-Type: text/html;
….

HTTP/1.1 400 Bad Request
Content-Type: text/html;
….

HTTP/1.1 200 OK
Content-Type: text/html;
….

The expected response

GET /?id=1 HTTP/1.1
Host: example.com
Expect: 100-continue

Experiments and Findings
❖ Found 29 exploitable server pairs

CVE-2019-17569, CVE-2020-1935

CVE-2020-0645

CVE-2020-14588

CVE-2020-2867, CVE-2020-14589

CVE-2020-1944

❖ Obtained 7 new CVEs

Summary
❖ New Detecting Framework:

Ø HDiff, a novel detecting framework, exploring semantic gap attacks in HTTP

implementations

❖ New Findings:
Ø Finding 14 vulnerabilities and 29 vulnerable server pairs in 10 popular HTTP

implementations

❖ Responsible Disclosure:
Ø Receiving 7 new CVEs from IIS, Apache, Tomcat, and Weblogic

HDiff: A Semi-automatic Framework for Discovering Semantic Gap
Attack in HTTP Implementations

Kaiwen Shen, Jianyu Lu, Yaru Yang, Jianjun Chen, Mingming Zhang, Haixin
Duan, Jia Zhang, Xiaofeng Zheng

DSN 2022 - June 28, 2022

Delegated Presenter: Shuai Hao

Thank you! Q & A

(Old Dominion University)

Tsinghua University Qi An Xin Group Corp

