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ABSTRACT
HTTPS is principally designed for secure end-to-end communi-
cation, which adds confidentiality and integrity to sensitive data
transmission. While several man-in-the-middle attacks (e.g., SSL
Stripping) are available to break the secured connections, state-of-
the-art security policies (e.g., HSTS) have significantly increased
the cost of successful attacks. However, the TLS certificates shared
by multiple domains make HTTPS hijacking attacks possible again.

In this paper, we term the HTTPS MITM attacks based on the
shared TLS certificates as HTTPS Context Confusion Attack (SCC At-
tack). Despite a known threat, it has not yet been studied thoroughly.
We aim to fill this gap with an in-depth empirical assessment of
SCC Attack. We find the attack can succeed even for servers that
have deployed current best practice of security policies. By rerout-
ing encrypted traffic to another flawed server that shares the TLS
certificate, attackers can bypass the security practices, hijack the
ongoing HTTPS connections, and subsequently launch additional
attacks including phishing and payment hijacking. Particularly,
vulnerable HTTP headers from a third-party server are exploitable
for this attack, and it is possible to hijack an already-established
secure connection.

Through tests on popular websites, we find vulnerable subdo-
mains under 126 apex domains in Alexa top 500 sites, including
large vendors like Alibaba, JD, and Microsoft. Meanwhile, through
a large-scale measurement, we find that TLS certificate sharing is
prominent, which uncovers the high potential of such attacks, and
we summarize the security dependencies among different parties.
For responsible disclosure, we have reported the issues to affected
vendors and received positive feedback. Our study sheds light on
an influential attack surface of the HTTPS ecosystem and calls for
proper mitigation against MITM attacks.
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1 INTRODUCTION
HTTPS, based on TLS and PKI, is designed for channel-oriented
security[56], and provides authentication,confidentiality and in-
tegrity for web visits. Recent data has shown that HTTPS has been
widely adopted on the Internet [6], and mandated for high-profile
websites. For example, Google reports that over 94% of its traffic is
now using HTTPS [5].

Given the wide usage of HTTPS, network adversaries are aiming
at breaking its end-to-end protection. Specifically, several man-in-
the-middle (MITM) attacks have been proposed to intercept secure
connections, such as SSL Stripping [51] and SSL Sniffing [49]. To
mitigate such threats, websites can deploy security practices, such
as HTTP Strict Transport Security (HSTS) [37]. Moreover, web
browsers have improved their UI to show secure connections (e.g.,
a “lock” sign or “insecure” alarm), and report authentication errors
for users to notice interception behaviors. These countermeasures
have made HTTPS traffic hijacking difficult.

Recent studies have shown that shared TLS certificates (Certifi-
cate Sharing) make HTTPS hijacking attacks possible again. Delig-
nat et al. studied an origin confusion attack on virtual hosts [31]
exploiting the wildcard or multi-domain TLS certificates. Based on
the idea, another work [14] further provided more examples where
attackers can load malicious content using compromised webpages.
However, prior work only exhibited several attack cases, and there
has been no systematic empirical research, neither examining the
client-side (e.g., browsers’ behavior) nor considering the complex
network environment.

In the remainder of the paper, we call the HTTPS MITM attacks
leveraging shared TLS certificates as HTTPS Context Confusion
Attack (SCC Attack) based on their consequences. The research
questions we seek to answer include: (1) Under what circumstances
do the shared TLS certificates bring threats? (2) How to discover
potential websites at a scale that are vulnerable to SCC attacks? (3)
How severe is the impact in the real world, and how many popular
sites are SCC-attack-vulnerable? To answer these questions, we
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conduct a large-scale empirical study on SCC attacks. We demon-
strate that TLS certificate sharing imposes a risk of intercepting
HTTPS traffic, even when strict security practices are deployed by
websites.

In more detail, we delve into the real-world influences of SCC
attacks. First, we show attackers can launch such attacks to bypass
state-of-the-art HTTPS security policies, such as HSTS, by using the
inconsistency of HTTP headers (Section 4.1). Second, we show how
attackers can disrupt HTTPS-protected user actions, such as online
payments and file downloads, in complicated connection status.
We find that even with a secure connection established between
a client and server, HTTPS hijacking is still possible (Section 4.2).
Third, we test on browsers notifications and behaviors during SCC
attacks (Section 4.3). Then, to evaluate the real-world impact of the
attack, we propose methods on discovering SCC-attack-vulnerable
servers in the wild based on active scanning (Section 5.1). Last, we
perform a measurement study on popular web servers (Section 5.2)
to show the threat scale.

Our results show that certificate sharing is prevalent (over 86.82%
of certificates we probed from Internet are multi-domain or wild-
card ones), and that 126 apex domains (e.g., live.com, alipay.com,
jd.com) of Alexa Top 500 have vulnerable subdomains. Among
these, the apex domains under Alexa Top 100 have the most se-
vere impact due to a large number of shared certificates (52% of
all fetched multi-domain certificates). Moreover, we have analyzed
the security dependencies among multiple parties and found the
flawed implementations on one server can affect the security of a
great many parties.

For mitigation, we provide feasible recommendations for modern
browsers, such aswarning users of the changes in the secure context.
We have been reporting the issue to affected vendors and CNNVD1,
and have received responses from five of them: CNNVD, Alibaba,
and JD have confirmed our issues, and we are still discussing with
Microsoft and Netease for more technical details.
Contributions. In this paper, we make the following contributions:

● We conduct an empirical analysis of SCC attacks that leverage
shared TLS certificates. Through this attack, we find an adver-
sary can downgrade established secure connections to plaintext,
bypass HTTPS security policies, and disrupt HTTPS-protected
services. The typical attack scenarios include payment hijacking,
downloading hijacking, and website phishing.
● We evaluate SCC attacks from the client side, and analyze pop-
ular browsers’ behaviors to attacks in different scenarios. We
show the weakness of tested browsers against the SCC attack
and propose enhancements to mitigate the issues.
● We propose methods to discover SCC-attack-vulnerable web-
sites at scale, and perform a large-scale measurement study on
its real-world impact. Our results show that 25.2% subdomains
under Alexa Top 500 sites are vulnerable to the SCC attack,
which span 126 apex domains. Moreover, we uncover the secu-
rity dependencies among business parties.

1China National Vulnerability Database of Information Security

Figure 1: Example of the Shared TLS Certificate

2 BACKGROUND
2.1 HTTPS and Connection Security
On top of TLS, HTTPS provides communication security for web
visits, which has been widely adopted by high-profile websites [56].
Besides encryption and integrity, it also provides authentication to
protect against man-in-the-middle attacks, which rely on TLS cer-
tificate validation. For the convenience of issuing, managing, and re-
voking, TLS certificates can be shared by multiple subjects [29, 58].
As shown in Figure 1, a shared TLS certificate uses the Subject
Alternative Name (SAN) extension to include multiple names or
addresses. If none of the names are matched, or other invalid rea-
sons(e.g., expired, self-signed, or malformed) occur, user agents will
show authentication warnings to users. In contrast, once a certifi-
cate is validated, a trusted relationship can be established between
the client and the server. Then all subsequent data are exchanged
using the encrypted connection.

For enhancing HTTPS security, several mechanisms are adopted
bymodern browsers and popularwebsites and implemented through
HTTP security headers [11, 52]. The headers are typically the in-
structions declared by servers to enforce the security policies in
browsers [11, 37]. For instance, Strict-Transport-Security header
forces browsers to interact with the server using only HTTPS con-
nections during a period (max-age), which is a core of the HSTS
policy. However, these headers can not fully guarantee security
due to the implementation issues both on the client-side and the
server-side.

2.2 SSL-Stripping-Based Attacks
Over the past few years, MITM attackers have become the main
adversaries to SSL/TLS [39]. One of the most representative attacks
is SSL Stripping Attack, which is introduced by Moxie Marlinspike,
and attempts to bypass SSL/TLS [51]. In this attack, the adversary
needs to intercept the initial HTTP connection when the user ac-
cesses the website for the first time, then delivers the request to the
remote server. When he receives a 301/302 redirect to an HTTPS
URL, he can replace the secure links returned by the server with
plaintext ones, and keep the mapping of the changes. In this way,
he can control the specific secure page and downgrade HTTPS to
HTTP. As a consequence, the attacker can observe the sensitive
data of users from the middle [57].

Further, Leonardo developed a tool combining SSL Stripping and
a malicious DNS tool [33], and the work is called SSLStrip+ [15, 34].
By doing this, attackers can partially bypass the HSTS policy. Af-
ter measuring on the deployment of HSTS, Li et al. introduced an
Enhanced SSL Stripping Attack while clicking or submitting [46].
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Figure 2: Threat Model

The basic idea is to use the XSS script at the front-end and replace
HTTPS with HTTP. Similarly, Chen et al. demonstrated the possi-
bility of stripping HTTPS by malicious proxies without breaking
any cryptographic scheme [27]. They described that proxy could
redirect script requests to insecure sites.

In such SSL stripping attacks, there needs an insecure initial
request to be tampered. Meanwhile, there are no trusted TLS cer-
tificates provided by the remote server to protect the traffic. Hence,
careful users can notice the abnormal validation status of certifi-
cates in the browser. Besides, an attacker can hardly launch an
SSL Stripping attack after an updated security policy, HTTP Strict
Transport Security (HSTS), is proposed.

3 THREAT ANALYSIS
The HTTPS MITM attacks we discuss rely on the design that mul-
tiple domains can share TLS certificates (see Figure 1). Using the
shared certificates, adversaries can load pages to one origin from
others due to the origin confusion issues [31]. However, the do-
mains in the shared certificates do not always enforce the same
security practices, some of which are misconfigured, especially in
HTTP security headers. By rerouting HTTPS requests to the flawed
servers, adversaries can invite their weak policies to the secure
origins, and bypass the security policies of the secure servers.

In this paper, we specifically summarize and term the HTTPS
MITM attacks using the shared TLS certificates as HTTPS Context
Confusion Attack (SCC Attack). Except for the origin confusion from
the server-side, there is also secure browsing context confusion
for programs and users from the client-side. It is because browsers
treat the instructions as returned by the accessed origins and take
insecure actions in the secure contexts.
SCC Attack Model. SCC attacks do not exploit vulnerabilities
of the TLS protocol, and we assume the certificates are valid and
issued by trusted CAs. In our threat model, we assume the attacker
locates in the same LAN as the victim users, being able to reroute
the encrypted traffic and tamper with the plaintext data. Studies have
discovered numerous home routers with weak credentials [43]. As
such, we assume the typical adversaries sniffer in local Wi-Fi or
ethernet who share the same media. Similarly, attackers can also
locate in the open Wi-Fi network (e.g., at coffee shops) without
strong security protection (e.g., WPA2). Besides, attacks can be
launched by malicious middleboxes (e.g., gateway, proxies) or even
from ISPs and governments level as well.
SCC Attack Overview. Figure 2 illustrates our threat model that
consists of four major components: (1) A victim user who browses
a webpage; (2) A man-in-the-middle attacker who can maliciously
reroute HTTPS traffic; (3) A webserver (ServerA), enforcing strict

security practices (e.g., HSTS), which the user attempts to visit; And
(4) another webserver (ServerB) with flawed security policies (e.g.,
misconfigured HTTP security headers). In particular, domains of
ServerA and ServerB share one valid TLS certificate.

An adversary first terminates a TLS connection (e.g., by con-
nection reset) between the client and ServerA, and maliciously
reroutes the HTTPS request ( 1○), which is originally from the vic-
tim to ServerA, to ServerB to re-establish a TLS connection ( 2○).
At this time, the browser still regards the context as under the con-
nection with ServerA. The authentication of ServerB can be passed
since the servers share one valid certificate. So, after receiving the
flawed security configurations from ServerB ( 3○), the browser will
enforce the weak policies for ServerA ( 4○). In short, the client ini-
tially visits ServerA but establishes a TLS connection with ServerB
without authentication errors.
Differenceswith SSL-Stripping-basedAttacks.Comparedwith
previous SSL-Stripping-based attacks, there are several features spe-
cial for SCC attacks because of certificate sharing. First, an SCC
attack can succeed even when strict security policies have been
deployed on the accessed websites. It is the third-party servers
with shared certificates that communicate with clients. Second,
it does not exploit initial plaintext requests. Hence, none of the
strict HTTPS policies, such as the directives in HSTS mechanism
or upgrade-insecure-requests in CSP, can prevent users from
SCC attacks. In particular, SCC Attack applies to established secure
connections. Third, it does not require installing root certificates to
clients, since the connection is protected by a trusted and valid cer-
tificate. As a result, SCC attacks are undetectable to web browsers
or applications. Last, web browsers do not display authentication
errors during the traffic rerouting, so victim users can hardly notice
SCC attacks.

4 SCC ATTACK IN THE REAL WORLD
In this section, we introduce the scenarios of bypassing HTTPS
Security Policies in SCC attacks (4.1) and demonstrate the technical
methods for attacking in the complex network environment (4.2).
For each attack , the attacker needs to maliciously reroute the target
HTTPS request to the certificate-sharing server, as mentioned in
our model, which is possible through DNS spoofing [64, 65], IP/Port
redirection[2] and ARP spoofing[36].

4.1 Bypassing HTTPS Security Policies
Based on the threat model, SCC attackers can exploit the header
inconsistencies among servers that share TLS certificates. After
systematic analysis, we find the following HTTP response headers
are exploitable and can bring disturbing threats, which can directly
downgrade secure connections and expose users to risk.
Scenario 1: Downgrading HTTPS to HTTP by Insecure Loca-
tion Headers. In practice, web servers can upgrade HTTP connec-
tions via a 3xx redirect to an HTTPS URL by default to achieve
maximum security. However, 3xx redirects can expose the com-
munication to threats if the Location field is set with an insecure
value (e.g., HTTP URL). Hence, adversaries can use the insecure
3xx redirects from servers to downgrade HTTPS traffic to plaintext,
which we term as HTTPS downgrading attacks. This idea applies to
SCC attacks in the certificate sharing scenarios.
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Figure 3: Multi-Hops Downgrading Attack. For each pair of
servers, the TLS certificate provided by the right server in-
clude the domain name of the left one.

(1) One-shot Downgrading Attack (Down-1). Attackers can
downgrade an HTTPS request by only rerouting the traffic once.
Refer to Figure 2, if the ServerB with shared certificates returns a
3xx redirect to an HTTP URL, the attacker can launch a one-shot
downgrading attack. The workflow goes as below.

First, when the client requests https://a.example.com, the at-
tacker should reroute the request to the flawed ServerB (IPB) by
means like DNS spoofing or TCP redirection. ServerB will not re-
ject the request: if it has Host checking issues (e.g., no or incorrect
Host checks) [24, 26] and handles the request of which the Host is
unmatched by a default server [31]; or if it implements the domain
aliasing and redirects the request to a valid domain, to avoid the
frequent typos when users type into the address bar [9].

Then, the HTTPS connection is directly downgraded if ServerB
returns an insecure 3xx redirect via the default handler. We have
conducted traffic rerouting measurement by changing the desti-
nation IP addresses (Section 5). We find 28.42% of the responses
are successful with 3xx redirects even if Host is unmatched, of
which 17.17% are insecure redirects. For example, when we send
the request htts://login.live.com to an IP (13.75.94.74) of MSN, the
server replies a 301 redirect with the Location set to http://www.
msn.com/?<parameters>.

Last, if the user agent follows the insecure redirects, adversaries
can tamper with the plaintext contents for further attacks, such as
phishing, resource replacing.

(2) Multi-hops Downgrading Attacks (Down-2). Compared
with the one-shot downgrading attack, multi-hops downgrading
attacks mean that an HTTPS request can be downgraded by link-
ing multiple 3xx redirects. Assume we want to intercept with the
HTTPS traffic between the client and the target server. However,
no server sharing TLS certificates with that domain returns an in-
secure 3xx redirect that can be used for one-shot downgrading. We
find this domain still vulnerable to SCC attacks, since we can link
up a series of 3xx redirects in the same way, and finally lead the
request to the insecure URL.

Figure 3 depicts an example of the whole process. In this case, the
client receives a redirect to https://commerce.microsoft.com/<path>,
after the attackermaliciously reroutes the request, originally toward
https://billing.microsoft.com, to 168.62.198.20 (Req.1-Resp.1). Then
the attacker repeats the same rerouting action on https://commerce.

microsoft.com/<path> and https://login.live.com/<path> (Req.2-
Resp.3). When the client follows the third redirect, it sends a plain-
text request (Req.4), which can be intercepted by the attacker.
Scenario 2: BypassingHSTSPolicy by Flawed Strict-Transport-
Security Headers.Web servers may declare HSTS policy via the
HTTP response header, Strict-Transport-Security (STS), forc-
ing browsers to access them in HTTPS only. The deployment of
HSTS policy grows in recent years [16, 54]. However, HSTS still
has security issues due to misconfigurations [42, 46, 60] and partial
adoptions [21, 61]. Adversaries can use these weak practices to
bypass the protection of HSTS policy [59], which also applies to
SCC attacks.

Similar to the attacks in Scenario 1, we assume ServerA has the
full adoption of HSTS policy, but ServerB is not well-configured.
An SCC attacker can bypass the HSTS-protection of ServerA by the
flawed STS headers on ServerB. In total, attackers can launch the
following three kinds of attacks.

(1) Clear HSTS Policy for ServerA (HSTS-1). In this attack, ad-
versaries firstly need to find a ServerB that shares TLS certificates
with ServerA and returns an STS header with the max-age directive
set to zero. When the victim user visits ServerA, the attacker mali-
ciously reroutes the HTTPS request to ServerB, which responses
with STS:max-age=0. Subsequently, the browser disables the HSTS
policy for ServerA, since it treats the flawed header as returned by
ServerA. After that, the next time when the user accesses ServerA
by typing the domain into the address bar without specifying the
protocol, the browser will initially send out an HTTP request, which
can be intercepted by the attacker.

(2) Cancel HSTS Policy for ServerA’s Subdomains (HSTS-2).
Recall that if the includeSubDomains directive is absent in a do-
main’s STS header, browserswill not protect its subdomains through
HSTS policy by default unless they are separately set. As such, aman
in the middle can attack the subdomains of ServerA (a.example.com)
using ServerB’s flawed STS header in our threat model. Assume
that ServerA is well-configured with HSTS policy, while ServerB’s
STS header does not include includeSubDomains. After rerouting
the request to ServerB, the browser will update the HSTS policy
received from it for ServerA, and will not protect ServerA’s sub-
domains with HSTS policy by default. So the next time the user
accesses one of ServerA’s subdomains by directly typing in the
domain, the insecure HTTP request that can be tampered will be
sent out.

Besides, if both max-age=0 and includeSubdomains appear in
ServerB’s STS header, the latter is ignored by browsers [37]. In this
case, the browser will clear HSTS policy for ServerA, and will not
set HSTS for its subdomains.

(3) Decrease HSTS Validity Period for ServerA (HSTS-3). As
a less harmful scenario, attackers can shorten the HSTS cache time
for ServerA in browsers, by rerouting the request to ServerB, of
which the STS max-age is smaller than that of ServerA. For example,
the HSTS validity period for ServerA is set to 31,536,000 seconds
(one year) as standard [37], while the value of ServerB is only one
day or less. As such, if users have not accessed ServerA during the
short period (e.g., one day), the user agent will send out an HTTP
request the next time (e.g., after one day) a user visits ServerA.

Discussion. The above issues can be mitigated if all domain
names in the shared TLS certificate are added to the preload list [4,

https://a.example.com
htts://login.live.com
http://www.msn.com/?<parameters>
http://www.msn.com/?<parameters>
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Figure 4: Timing for Hijacking the HTTPS Request

41]. However, HSTS preload is an opt-in project, and not all domains
have been added in it yet.

4.2 Attacking in Different Connection Status
In the above scenarios, we prove that adversaries can launch SCC at-
tacks at any proper time, unlike SSL Stripping attacks that can only
succeed at the initial request. They can intercept HTTPS requests
either in the process of the TLS handshake or from the middle of
an established connection, making SCC attacks more general.

Driven from the attack model, adversaries meet the following
technical challenges for successful attacks. First, they need to pre-
cisely identify the HTTPS request to be hijacked and find the timing
for intercepting it, since the request can be delivered either over a
new connection or in a persistent one shared with other requests.
Second, they need to terminate and restart the connection secretly
if it is keep-alive. Third, the interception must be unnoticeable to
users so that the attackers can disrupt the user actions. Below we
elaborate on the technical details to overcome the above challenges.
Timing of Attacks. Before attacking, adversaries need to force
clients to establish a TLS connection with a third-party server, like
the ServerB in Figure 2. Thus, they should find the proper time to
terminate the current connection and reroute the HTTPS request.

In Figure 4, the first two cases present the scenario of one request
per connection. We distinguish the interception for “a request to a
separate domain” from “a request to a specific path”. If a dedicated
domain only serves the single resource to be hijacked (case a),
attackers can reroute the request to a ServerB by poisoning the
DNS cache. As such, the interception will not influence the requests
for other resources served by different domains.

If multiple resources are served by one domain via different paths
(case b), more steps are needed to identify the request first. The
attacker can not reroute all traffic under that domain to ServerB;
otherwise, users will notice the abnormal functionality of web pages.
Instead, he should identify the particular HTTPS request toward
the target path over the encrypted flow (HTTPS Path Leaks).

However, attackers can only intercept the traffic during the hand-
shake process, for they need to let the client connect to ServerB
by rerouting the request. Thus if a secure persistent connection is
already established (case c), the attacker should trigger a legitimate

restart of the TLS handshake (TLS re-handshake) without security
warnings shown in the browser.
HTTPS Path Leaks. Previous work demonstrates that the cookies
injected in an HTTP session will be attached to subsequent HTTPS
connections [40, 66]. Although an acknowledged threat, this has
still been troubling the public over the years. In 2018, Chen et al. pro-
posed a new method to leak HTTPS paths via a side-channel [23],
which has not been mitigated yet. However, they did not introduce
the attack scenarios by leaking HTTPS paths. We can apply this
method to our threat model. Assume an attacker attempts to inter-
cept the request of https://a.example.com/n in Case C of Figure 4.
Before that, he can first inject a long cookie to that path via an
HTTP request to a.example.com, so that the TLS record size of the
target request packet can be large. Then, he can sniff at the TLS
layer, identifying that “large packet”, which he is going to hijack.
TLS Re-handshake. Assume that a client has already established
a TLS connection with ServerA. We term the process, in which the
client initiates a handshake for a new connection after the connec-
tion is reset, as TLS re-handshake, which can also be considered
as a new handshake. It is a new state of TLS connection, which
is different from the TLS renegotiation [56]. From our test in Sec-
tion 4.3, we find some browsers attempt to restart a handshake for
the remaining requests when Timeout occurs, or an in-path entity
(e.g., middlebox, MITM attacker) sends a TCP RST in the middle
of a persistent connection, as shown in Figure 4 (case c). As such,
the attacker can intercept the HTTPS request while the browser
starts a TLS re-handshake toward ServerA, and reroute it to an
exploitable ServerB. Then he can go on for further steps like the
regular SCC attacks.

4.3 Browser Behaviors to SCC Attacks
While performing SCC attacksmentioned above, wewonderwhether
the browsers have policies to defend these issues or alert the users
from being tricked. In this section, we test the browser behaviors
when an SCC attack occurs. Because bypassing HSTS policy attacks
are not directly reflected in browser behaviors except for updating
the HSTS policy, we will not discuss them here.
Browser Security Notifications in an HTTPS Downgrading
Attack. To inform users about the connection security, mainstream
browsers display indicators (e.g., a lock, a shield) in the address bar.
Meanwhile, they also warn the users when the authenticity of the re-
mote server is failed. In our HTTPS downgrading attacks, browsers
present no authentication warnings and show the certificates as
“valid” in the address bar on account of the shared certificates that
are trusted by the accessed domains. It has the users believe that
they have been browsing in an encrypted and secure context.

As for the indicators in the address bar, there are subtle differ-
ences among scenarios. We divide all downgrading attacks into the
following three kinds and test the browser behaviors separately.

First, downgrading the requests via the address bar or the hyperlink.
In requests like these, the browser will navigate to documents or
resources under the “new” context. So the address bar will directly
turn to an HTTP URL after the downgrading attacks. After that, the
browser’s appearance depends on what attackers do to the plaintext
request, which is similar to known website forgeries.

https://a.example.com/n


Table 1: The behavior of popular browsers in different OS when trying to trigger a TLS re-handshake
Windows MacOS Linux

RST

Chrome ✓ Re-handshake without warnings ✓ Re-handshake without warnings ✓ Re-handshake without warnings

Firefox
✓ Re-handshake without warnings.
ImageB is loaded, but the request

is pending all the time.

✓ Re-handshake without warnings.
ImageB is loaded, but the request

is pending all the time.

✓ Re-handshake without warnings.
ImageB is loaded, but the second request

is pending all the time.
Edge ✓ Re-handshake without warnings - -
Safari - ✓ Re-handshake without warnings -

Timeout

Chrome ✓ Re-handshake without warnings No Re-handshake and second request,
Network failure: ERR_TIMED_OUT

Re-handshake and ImageB is loaded.
Both the server and client send Alert.

Firefox
✓ Re-handshake without warnings,
ImageB is loaded, but the request

is pending all the time.
No Re-handshake. ImageB is not loaded,
and the request is pending all the time.

Re-handshake and ImageB is loaded.
Both the server and client send Alert.

Edge No Re-handshake. ImageB is not loaded,
and the request is pending all the time. - -

Safari - No Re-handshake and second request.
Network failure: ERR_TIMED_OUT -

1 The cases with ✓can be exploited by attackers to trigger re-handshakes successfully.
2 The light gray squares indicate the successful cases without any warnings.
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Figure 5: Recover the Context Back to HTTPS after the
Downgrading Attack. A and B serve for a.bank.com and
b.bank.com (only for example), which share TLS certificates.

Second, downgrading the requests and then upgrading the connec-
tion back to HTTPS after attacks. As presented in Figure 5, attackers
can first downgrade the HTTPS request of interest using the shared
certificates ( 1○). Then they force the browsers to follow one or more
3xx redirects returned by themselves ( 2○), and finally to request
an HTTPS URL which recovers the context back to HTTPS ( 3○).
During the process of 2○, attackers can forge 302 redirects and take
malicious behaviors for tricking on the clients, such as injecting
cookies or replacing parameters.

We have tested how browsers react to this kind of downgrad-
ing attacks. During the intermediate redirects ( 2○), there are no
changes in the appearance of the browsers, including Chrome,
Firefox, Safari, and IE. The webpage and the address bar always
show the contents and the address of the first HTTPS request, say,
https://a.bank.com?orderid=a in Figure 5, because the clients do not
receive the response bodies to be rendered. Only after the request
of https://a.bank.com?orderid=b finishes, the URL and the page turn
to this HTTPS content. It is difficult for users to notice the attack
because the webpage jumping time is short, and the browsers show
the secure context all the time.

Moreover, assume that the first request in 1○ is going to a non-
rendering resource (e.g., installation packages, email attachments).
After downgrading, in 2○, the attacker forces the browser to request
a malicious executable, which is fetched in an HTTPS context.
During the download process, we find the browser has no changes,
and the address bar stays at the original HTTPS request without any
jumps. Thus, this kind of attack is transparent and undiscoverable
to users.

Third, downgrading the requests for passive contents of the web-
page. If the requested passive contents (e.g., image, video) are going

to be rendered on the page, we find the Firefox in iOS still shows
the “lock” icon after downgrading the request and replace the pas-
sive content, while the Chrome turns the “lock” to an “exclamatory
mark”, and Safari, as well as IE, shows no icon except for the URL.
Browser Behaviors to the Trigger of TLS Re-handshake. We
have also tested howmodern browsers handle the TLS re-handshake
in different operating systems. We set up our test environment on
two HTTPS servers (CentOS 6.9), ServerA and ServerB, which share
the TLS certficate. Both of the servers serve two files, ImageA and
ImageB. On ServerB, we accept all requests without checking the
Host header. Then, we request these files from ServerA through
JavaScript over a persistent connection. We send a TCP RST or
trigger the Timeout in between two requests, to check whether the
browser will start a new handshake and finish the second one. If it
happens, we will reroute the second request to ServerB.

In the cases with ✓shown in Table 1, the browser will immedi-
ately start a TLS re-handshake without showing warnings, after
the connection reset or timeout. Among these cases, we see that
Chrome can start a new handshake and transparently load the
resources from ServerB, after receiving a RST packet on different
operating systems, as well as Timeout on Windows. Besides, in
Firefox on all operating systems, the users can notice the attacks.
Though some browsers can not load ImageB from ServerB after
re-handshaking, it is still vulnerable if ServerB returns a 301/302
redirect toward an HTTP URL.

5 DISCOVERING VULNERABLE SERVERS
IN THEWILD

5.1 Methodology
In our threat model, adversaries aim to attack the servers that may
adopt full security settings, and they use the flaws of other servers
that have security dependencies with the targets. As such, given a
list of domain names to find out the vulnerable ones, we first need
to collect the related domains that share TLS certificates with them.
Then, we should send HTTPS requests to the tested domain names
and crossly reroute the requests to the related domains that can be
exploited (as shown in Figure 7). In this section, we introduce how
to discover the exploitable servers in the wild.
Getting Related Domain Names. As aforementioned, one pri-
mary security dependency of domain names comes from the shared



TLS certificates, since each certificate can be trusted by all host-
names shown in CN or SAN fields, especially when there are wild-
card domains. We assume the hostnames in one certificate may
affect each other and group them together, no matter whether they
have a real relationship in business.

Thus, we can parse the related domains from the TLS certificate
datasets. For a comprehensive analysis, there are several options for
certificate dataset: (1) Active Scan.We can conduct an active scan
over IPv4 address space to collect the TLS certificates. However,
only the default certificates in most servers can be fetched due
to the lack of valid SNIs. (2) Passive Dataset. Another option is
to parse the certificates from passive traffic. It shows the in-use
TLS certificates from the real network environment, but it needs
representative vantage points to sniffer for a long time, which is
high cost and inefficient. (3) Public Dataset. A feasible option is to
search in the public TLS certificate datasets, including Certificate
Transparency (CT) logs, Censys, and Rapid7. However, they include
massive expired certificates, in which there can be a large quantity
of redundant data.
Rerouting HTTPS Requests. After mapping the domain names,
we start to send HTTPS requests to them, while rerouting each
request to the related domains in the same group as the example
in Figure 7. The traffic rerouting process is done at the TCP and IP
layers so that we can consider the TCP 4-tuple.

(1) Switch the Server IP Address. Refer to the threat model
(Fig. 2), without regard to load balancing, each related domain
(b.example.com) can be mapped to another single IP address (IPB).
We can reroute the request of https://a.example.com to IPB, to let
the client establish the connection with ServerB that might return
vulnerable responses.

Here, we can choose two kinds of destination IP addresses to
reroute the traffic. If the domain name of ServerA maps to multiple
addresses via DNS (e.g., for load balancing), each of the addresses
can be chosen because different servers may have inconsistencies
in configurations. Alternatively, the resolved IP addresses of the
related domains that share certificates are also optional. Because the
certificates are shared and valid, browsers report no authentication
errors after the rerouting.

(2) Switch the Server Port Number. Recall that the HTTPS ser-
vice runs on the port 443 by default [56]. Alternatively, the TLS
server can also listen on other TCP ports (e.g., 8443, 8843) if being
specified [63]. Hence, there can be multiple servers, serving on dif-
ferent ports of the same IP address, that may share TLS certificates
and have inconsistencies. Same as IP addresses, we can also reroute
the request by switching the destination port number from the TCP
layer.

(3) Switch the Client IP Address.We find one server’s HTTP
responses may vary from the client IP addresses located in different
regions, which can still happen regardless of the DNS resolution. For
example, a CDN edge server on one IP can serve different content
for users from multiple countries. So the client IP address plays
a decisive role during website access, which also applies to SCC
attacks.

In this scenario, we give an attack model in Figure 6. First, the
request of https://a.example.com is delivered to the attacker’s server
(the 1st-phase) that acts as a malicious client-side proxy and locates
in another region, bymeans like spoofingWPADor tricking the user

Server
(a.example.com, IPA)

Proxy
(Region B)

Client
(Region A)

Get /home.html HTTP/1.1
Host: a.example.com
…

HTTP/1.1 200 OK
Server: Apache

…� Direct Request

� Proxied Request

Get /home.html HTTP/1.1
Host: a.example.com
…

HTTP/1.1 302 Moved Temporarily
Server: Apache

Location: http://a.example.com
…

1st-phase 2nd-phase

C CS S

Figure 6: Client-IP Switching Model. The attacker and the
client locate in different regions. And the server response
them with different policies.
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Figure 7: An Example of Crossing Requests

into using a malicious proxy. Then, the proxy server establishes the
TLS connection with the remote server and sends the request to it
(the 2nd-phase). In turn, the target server replies to the proxy server
according to its geo-location, and the proxy forwards the response
back to the client. If the response in the 2nd-phase has vulnerable
security headers, it is possible to enforce the weak security policy
for a.example.com in the victim’s browser.

(4) Take CDN into Consideration. As a middle entity, Content
Delivery Network (CDN) is widely deployed to improve the perfor-
mance and the security of websites. It is geographically distributed
and serves each customer’s website with multiple nodes. However,
we find configurations inconsistencies among different CDN nodes,
which can be exploited to launch potential SCC attacks. Like the
Barrel Principle, the node with weak configuration can affect the se-
curity of other nodes and customer’s websites, since adversaries can
reroute the traffic to that flawed node and exposed the connections
to threat.

5.2 Real-world Impact: Measurement Analysis
To better understand the impact of the preceding issues, we con-
duct a systematical measurement on popular websites to discover
exploitable servers using the above methodology.

5.2.1 Iterative Scan. Given a list of domain names to be tested, first,
we parse their related domains from the TLS certificates on 8 CT
log servers of Google and Symantec as much as possible. Because
there are massive wildcard domains in the certificates, we also
collaborate with our industrial partner and extract the concrete
subdomains of the tested domains from their passive DNS database
as a supplement.

Next, we query the domain names and get their IP addresses after
filtering out the invalid domain names, including the non-existent
and the expired ones. For each group of related domain names and
their resolved IP addresses, we try to crossly send HTTPS requests
to each IP with the Host and SNI set to each domain name, acting as
rerouting the requests to different server IPs as shown in Figure 7.
Here, the IP addresses represent the servers that provide the shared
TLS certificates with the tested domains.

https://a.example.com
https://a.example.com


Table 2: Overview of Dataset and Scale of Affected Domains for All Attack Scenarios within Alexa Top 500 Apex Domains.
Alexa Rank 1-100 101-200 201-300 301-400 401-500 Total

Multi-domain Certificates 4,630 1,400 1,017 1,120 725 8,892
All extended FQDNs 83,367 67,262 41,296 60,325 39,977 292,227
FQDNs with HTTPS 12,453 5,695 5,113 5,904 5,152 34,317

HTTPS downgrade (C1.1) Down-1 36 19 19 20 20 114 (22.8%)
Down-2 11 4 4 4 4 27 (5.4%)

HTTPS downgrade (C1.2) Down-1 32 17 16 18 15 98 (19.6%)
(Filter out HSTS) Down-2 7 4 1 3 4 19 (3.8%)

HSTS-1 3 2 0 0 0 5 (1%)
HSTS-2 7 6 5 2 1 21 (4.2%)HSTS Bypass (C2)
HSTS-3 7 7 7 7 3 31 (6.2%)
C1.1+C2 37 21 21 24 23 126 (25.2%)

# Affected Apex Domains

All C1.2+C2 34 19 19 24 18 114 (22.8%)
Down-1 826 434 352 476 354 2,442 (7.12%)HTTPS downgrade (C1.1) Down-2 266 48 151 98 24 587 (1.71%)

HTTPS downgrade (C1.2) Down-1 590 391 268 174 328 1,751 (5.10%)
(Filter out HSTS) Down-2 119 48 5 95 24 291 (0.85%)

HSTS-1 23 19 0 0 0 42 (0.12%)
HSTS-2 37 24 14 19 1 95 (0.28%)HSTS Bypass (C2)
HSTS-3 54 24 28 43 12 161 (0.47%)
C1.1+C2 1,087 497 391 572 371 2,918 (8.50%)

# Vulnerable FQDNs

All C1.2+C2 725 458 297 304 356 2,140 (6.24%)

While performing the HTTPS requests, we also actively and
dynamically fetch the TLS certificates and add the newly parsed
domain names into our testing dataset. We repeat the above scan-
ning process until no new domain names can be found out. In this
way, we can fully get the domain names that have security depen-
dencies caused by the shared certificates. We determine a domain
as "SCC-vulnerable", if any server (IP) that provides the shared TLS
certificate replies with the exploitable headers as we mentioned in
Section 4.

Limitation. In this iterative scanning process, we can fully dis-
cover all related domain names that might be exploitable in the
certificate sharing scenario. However, we need to send requests
of each related domain to each IP crossly, so the required HTTPS
requests shall increase exponentially.

5.2.2 Dataset. Considering the performance, we only use Alexa
Top 500 apex domains as the seed to be tested.
Domain Names. By parsing subdomains from the CT logs and
the passive DNS traffic, we get 283,311 subdomains under the 500
apex domains. After the iterative scan, we extend the dataset to
333,640 subdomains spanning 5,780 apex domains, while 292,227 of
them are under Top 500 apex domains (Table 2). The added domain
names are all parsed from the newly fetched TLS certificates.

Based on the domain set, we collect 6,765,333 domain-ip pairs
for HTTPS requests rerouting test, and 4,503,824 (66.57%) pairs have
passed the TLS certificate validation while connecting. Here, each
domain-ip pair represents an HTTPS request. The HTTPS requests
with the successful or the redirection status code (i.e., 2xx, 3xx)
cover 59,713 concrete subdomains spanning 4,043 apexes, and 34,317
of these subdomains are under Top 500 apex domains.

The 34,317 subdomains here include all related domains of the
top 500 apex domains we can get. In Table 2, we have shown the
number of subdomains in each partition by Alexa Rank. In our
analysis, we mainly focus on these domain names to discover the
SCC-vulnerable sites and measure the threat scale.
TLS Certificates. During the iterative scanning, we collect 12,734
valid certificates shared by the subdomains under Alexa Top 500.
Over 86% are multi-domain certificates, indicating that certificate

sharing is common in reality. Besides, from all partitions in Table 2,
we find the number of multi-domain certificates has a strong cor-
relation with FQDNs’ amount. As such, under a certain of apex
domains, the more of subdomains, the more of the shared certifi-
cates.

5.2.3 Analysis and Findings. From the measurement results, we
find that the shared TLS certificates can expose popular domains to
threats. Besides, we demonstrate the security dependencies among
multiple subjects or organizations.
Overview of Threats. By analyzing the responses of HTTPS re-
quests, we find 2,918 (8.50%) subdomains under 126 (25.2%) Alexa
Top 500 apex domains are vulnerable to SCC attacks. In Table 2, we
give an overview of the vulnerable subdomains for all attack types.

Downgrading HTTPS to HTTP.According to the statistics, HTTPS
downgrading issues account for a large proportion of all exploitable
cases (Table 2, C1.1). By rerouting HTTPS requests, we find the
secure connections toward 2,442 subdomains under 114 apex do-
mains can be attacked by a one-shot downgrade. The affected apex
domains include the famous ones like baidu.com, amazon.com, and
tmall.com. For example, when rerouting the requests of the sub-
domains of tmall.com to 47.88.135.224 (AS45102, Alibaba), we can
always receive a 302 redirect to http://err.taobao.com/error1.html.
The connection is directly downgraded to a plaintext one via this
single roundtrip. Additionally, 587 subdomains under 27 apex do-
mains (e.g., office.com, linkedin.com, and microsoft.com) can be
downgraded through multi-hops downgrading attacks.

For both one-shot and multi-hops downgrading attacks, there
are the security dependencies among different domains caused by
3xx redirects returned by the servers that share certificates. Like the
example we show in Figure 3, the security of billing.microsoft.com
can be influenced by that of www.msn.com after three hops. Hence,
we further delve into all targets of the 3xx redirects. We compare
the domain in the Location field with the original hostname and
show the results in Table 3. In total, we find 16.56% requests are
redirected to the same domain name via the Location field, while
49.12% to other FQDNs under the same apex domain. Besides, there
are also 34.32% cases go to the third-party domains under different

http://err.taobao.com/error1.html


Figure 8: The Security Dependencies among the Tested
FQDNs. Each node represents one FQDN, and each link
shows the security dependency between two domain names.

apexes. For instance, maps.live.com can be finally redirected to
www.msn.com.

However, there is an exception for HTTPS downgrading attacks.
Referring to Figure 2, the plaintext request will not be sent out,
if ServerB returns a 302 redirect to http://c.example.com, and the
browser has already enforced HSTS for c.example.com. It means the
TLS connection can not be downgraded, though ServerB returns
an insecure redirect. So we filter out the downgrading cases of
which the 3xx redirect target domains are configured with HSTS.
After that, there are still 1,751 subdomains that can be one-shot
downgraded by traffic rerouting (Table 2, C1.2). Specially, we find
22 subdomains that can not be one-shot downgraded anymore due
to the 3xx targets’ HSTS policy, but they can still be downgraded
after over two hops attacks. It shows the multi-hops attacks can
increase the possibility of HTTPS downgrade attacks.

Bypassing HTTP Strict Transport Security. For bypassing HSTS
policy, we list the measurement results in Table 2 (C2) based on
the attack types. Within Alexa Top 500 websites, we find a total of
271 FQDNs under 43 (8.6%) apex domains that can be influenced by
the STS header of other domains that share TLS certificates. Notice
that there are overlaps of the apex domains among three types of
attacks, since the vulnerable subdomains for each attack type may
be under the same apex domain. In more detail, we can directly
clear the HSTS policy for 42 subdomains under five apex domains
(C2, HSTS-1), such as gaode.com, baidu.com, and aliexpress.com,
by rerouting the HTTPS requests to the flawed servers.

Summary. From Table 2, we see that the total number of domain
names for all types of attacks has a strong correlation with that of
the multi-domain certificates. The reason is that SCC attacks are
caused by the flawed servers that provide the shared TLS certificates,
namely, the multi-domain or the wildcard certificates. In terms of
the domain ranking, we find that Alexa Top 100 domain names
have the most problematic subdomains, accounting for 37.25% of all
vulnerable FQDNs and 36% of all affected apex domains we found.
We infer it is caused by a large number of shared certificates.
Security Dependencies among Multiple Parties. In our threat
model, the servers from different corporations or paries have the
security dependencies caused by the shared TLS certificates. For
example, in the HTTPS downgrading scenario, the security of the
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Figure 9: The Security Dependencies among the Apex Do-
mains. Given a pair of domain: A->B, we mean the security
of A can be influenced by that of B.

accessed domain name can be influenced by both the domains that
share TLS certificates and the target domains of 3xx redirects. If a
domain name has not deployed security policies well, all domains
that depend on it may be exposed to threats.

In order to show the security dependencies in the certificate shar-
ing scenario, we extract all domain pairs, including the requested
domain (Host) and the related domain, as well as the Host and
the 3xx target domain. As a result, we find converging clusters
among FQDNs, as shown in Figure 8. The in-degree of each node
represents the number of domains that depend on it. We find the
center node with the maximum in-degree is pages.ebay.com, which
is relied on by over 900 concrete domain names. If the domains at
the convergent nodes are vulnerable, there will be potential security
threats for those around them.

Zooming into the apex level, we demonstrate the dependency
link samples among the affected apex domains in our measure-
ment (Figure 9). Overall, we can summarize the following rela-
tionships among parties that have security dependencies: (1) The
sub-domain and the apex-domain of the same corporation. As Fig-
ure 9 (c) shows, the subdomains of uol.com.br can be downgraded
by the server of uol.com.br. (2)The trans-regional services of the
same corporation. For instance, eBay registers multiple apex do-
main names (e.g., ebay.cn, ebay.de, ebay.jp) for the service of dif-
ferent regions. We find these domain names share TLS certifi-
cates with ebay.com. Then we try to reroute the HTTPS request,
originally toward their regional subdomains, to an eBay’s IP ad-
dress like 66.135.201.205, and we receive a 302 redirect to http:
//pages.ebay.com/messages/CN_page_not_found.html. Therefore,
the traffic can always be downgraded to plaintext. (3) The subsidiary
and the holding company. In (b) and (c), we see that domains of Office,
MSN, and Bing rely on the security of Microsoft’s domain, while
Xiami, Tmall, and AliExpress rely on Alibaba Group. (4) Business
partnership or investment relationship, such as WordPress/KPMG
andMicrosoft, Merrill Lynch (ml.com) and Bank of America, Umeng
and Alibaba Group. (5) Other relationship, like the service providers
and their customers. For example, we find that a domain of NIH,
www.myitsm.nih.gov, can be redirected to www.servicenow.com
while we reroute the request to 137.187.0.26 (belongs to NIH). The
latter is involved in the development of the former.

http://pages.ebay.com/messages/CN_page_not_found.html
http://pages.ebay.com/messages/CN_page_not_found.html


Table 3: Statistics on the Targets of 3xx Redirects. Here, the targets are domains shown in the Location field.
3xx Redirected to Same FQDN Same apex-domain Other apex-domain

All redirects 16.56% 49.12% 34.32%
Filter out the targets that enforce HSTS 17.22% 46.73% 36.05%

Besides, there are also dependency links across multiple par-
ties, such as ebay.com->office.com->live.com. In summary, TLS
certificates are widely shared by the parties that have the above
relationship, which is necessary for business. However, the threat
can be on a large scale if some of the domain names have security
flaws as we introduced in Section 4.

5.3 Case Study
Through our measurement work, we have found thousands of vul-
nerable domain names. In this section, we give the case studies
and show that SCC attacks may occur in scenarios that are closely
related to our daily lives.

5.3.1 HTTPS downgrading attacks by switching the destination IP.
These attacks depend on the insecure 3xx redirects returned by
the certificate-sharing servers. Below, we give a brief description
of each case to show how to attack the HTTPS request of interest
without being noticed.
Online Payment Hijacking. E-commerce payment, through tra-
ditional bank accounts or online payment services (e.g., PayPal,
Alipay), brings convenience for online purchases. However, we find
that adversaries can attack the payment process using shared TLS
certificates. Here is a case of meddling with the payment process
while shopping on JD.com, a popular E-commerce website in China,
from the middle of the secure context.

Case 1: Hijacking the Process of Bank Payment. In the pay-
ment process of online shopping, the website requires buyers to
choose which bank they wish to pay through. After that, JD will
send a POST request with the payment information to a single do-
main, channel.jdpay.com, which then delivers the attributes to the
server (ibsbjstar.ccb.com.cn) of China Construct Bank (CCB). How-
ever, the HTTPS request, from the client to channel.jdpay.com, can
be downgraded if an attacker reroutes it to the IP of www.yhd.com.
It is becausewww.yhd.com shares a TLS certificatewith *.jdpay.com,
and it returns a 302 redirect toward http://www.yhd.com?l=1&err
=53 if we reroute the request of https://channel.jdpay.com to it.

When the browser follows the insecure redirect, the attacker
can hijack the HTTP request and forge another 302 response to
the client. In this response, he sets the Location field as a payment
URL of the attacker’s order, https://ibsbjstar.ccb.com.cn/CCBIS/B
2CMainPlat_03_EPAY?<parameters-of-attacker’s-order>. Hence,
the victim user may pay for the attacker’s bill after the browser
renders this replaced payment webpage. During this attack, the
browser shows no alerts to the users, since the “lock” icon shows
the context is secure and protected by a valid certificate.
Download Hijacking. Another hijacking scenario occurs when
we download the non-rendering resources (e.g., email attachment,
installation packages) from a website. Attackers can downgrade the
HTTPS requests and replace the resource with another one, such
as a malicious executable. This kind of attack is more concealed
since the address bar remains unchanged if the response content of
a subsequent request is not rendered on the webpage.

Case 2: Replacing the Installation Package of XiamiMusic.
Xiami Music is a popular music streaming service owned by Alibaba
Group. To download an installation package for Windows version
from its homepage, an HTTPS request is sent to a URL2 under
the domain name, files.xiami.com. However, we find the server
of taobao.com shares a TLS certificate with *.xiami.com, which
is exploitable for SCC attacks. Thus, an attacker can reroute the
downloading request to the server of taobao.com, which returns
a 302 redirect to http://err.taobao.com/error1.html. After that, he
intercepts the HTTP traffic and returns a malicious executable to
the innocent user instead, without any warnings shown in the
browser. Throughout the process, the address bar always stays at
the URL, https://www.xiami.com, and shows a secure lock icon.
Website Phishing. Adversaries can also forge the whole webpage
and launch a phishing attack, to meddle with users’ actions or leak
their private data. It occurs when users click a hyperlink to open a
new webpage or access a website through the address bar.

Case 3: Phishing onMicrosoft or NeteaseWebsites. The login
page of Microsoft is hosted on https://login.live.com/login.srf?<pa
rameters>, while www.msn.com shares the TLS certificate with
*.live.com. The attacker can reroute that HTTPS request to the
server of www.msn.com, which then returns a 301 redirect to an
HTTP URL3. It is because the server of MSN does not reject the
request when the Host header is unmatched but hands it over to
the default virtual host. When the browser follows the 301 redirect,
the network attacker can hijack the plaintext traffic and replace the
page. For instance, he can forge a login webpage and trick users into
handing over sensitive information like their accounts. According
to the relation group shown in Figure 9, we find the login processes
of MSN and Bing are all SCC-vulnerable since Microsoft authorizes
all of them via login.live.com.

Similarly, the request for Netease EnterpriseMailbox, qiye.163.com,
can also be downgraded if we reroute it to www.163.com. In this
site, attackers can launch a phishing attack as well.

5.3.2 HTTPS downgrading attacks by switching the client IP. Dif-
ferent from the cases in Section 5.3.1, here we request one server
from different regions.

Case 4: Intercepting the HTTPS Traffic toward Sina Weibo.
Sina Weibo is the most famous microblogging website in China, of
which some services are hosted on the Akamai CDN. We separately
send the request, https://www.weibo.com/, to a CDN IP address,
180.149.134.141, from the client IPs located in multiple regions.
Then, we get different response headers from that server, as shown
in Table 4 in the appendix. The IP address in China receives a 200
OK, while those in Japan and the US get 302 redirects to an HTTP
URL. It is because the CDN edge server provides the trans-regional

2The full downloading URL in Xiami is https://files.xiami.com/webh5/files/xiamiWin/
068ba49b0603140cabe09fc34771cd70.xiami7.2.7.exe
3The full URL is http://www.msn.com/?redirfallthru=https%3a%2f%2fsignup.live.co
m%2f%3f

http://www.yhd.com?l=1&err=53
http://www.yhd.com?l=1&err=53
https://ibsbjstar.ccb.com.cn/CCBIS/B2CMainPlat_03_EPAY?<parameters-of-attacker's-order>
https://ibsbjstar.ccb.com.cn/CCBIS/B2CMainPlat_03_EPAY?<parameters-of-attacker's-order>
http://err.taobao.com/error1.html
https://www.xiami.com
https://login.live.com/login.srf?<parameters>
https://login.live.com/login.srf?<parameters>
https://www.weibo.com/
https://files.xiami.com/webh5/files/xiamiWin/068ba49b0603140cabe09fc34771cd70.xiami7.2.7.exe
https://files.xiami.com/webh5/files/xiamiWin/068ba49b0603140cabe09fc34771cd70.xiami7.2.7.exe
http://www.msn.com/?redirfallthru=https%3a%2f%2fsignup.live.com%2f%3f
http://www.msn.com/?redirfallthru=https%3a%2f%2fsignup.live.com%2f%3f


services, and it redirects the request to the specific URLs based on
the user’s location.

In this case, whenChinese users browse https://www.weibo.com/,
network attackers can force the requests to go through the con-
trolled proxy servers in Japan or the US, and finally reroute them
to 180.149.134.141. The proxy servers then forward the insecure
responses back to the users. If the client follows the 302 Redirect
and sends out the plaintext request, the attacker can intercept it an
go on for phishing attacks or injecting the advertisement.

5.3.3 HSTS Bypassing Attack. As aforementioned in Section 4.1,
clearing HSTS policy by setting max-age to zero is more dangerous
than the other two scenarios. Here, we show a case of this kind.

Case 5: Clearing the HSTS Policy for AutoNavi. AutoNavi
Software is a web mapping, navigation, and location-based services
provider, which is known as Gaode in China. When requesting
https://gaode.com, we find the server returns a response with the
HSTS max-age set to 31,536,000 seconds. However, the HSTS valid-
ity time of Gaode is updated to zero, if a network attacker reroutes
the request to another IP address, 106.11.223.100 (owned by Al-
ibaba Group). It is because the server hosted by this IP address
returns strict-transport-security:max-age=0 in its headers.
This header can clear Gaode’s HSTS cache at the client-side, since
the browser treats it as returned by gaode.com. Therefore, the next
time users access Gaode’s website by typing the domain directly
without the protocol, the browser will initiate an HTTP request
first, which is considered dangerous.

6 DISCUSSION
6.1 Root Causes
Key Reason 1: Certificate Sharing. Consider convenience and
cost, the multi-domain and the wildcard certificates are widely
used by modern servers (one certificate is valid for multiple do-
mains). Besides, sharing the same certificate is also widespread
due to CDNs, virtual hosts, associated services, and commercial
cooperation (multiple servers provide one certificate). In short, cer-
tificate sharing plays a vital role for certificate management and
grows at a scale. However, the shared TLS certificates can bring
security dependencies to different servers. The subjects in these
shared certificates are linked together like familiar strangers. The
flawed implementation on one server may expose other domains
to threats, just like the barrel effect. As an essential cause for SCC
attacks, the shared TLS certificates need more public attention and
should be well deployed.
KeyReason 2: Problematic Implementations of Security Poli-
cies among Different Parties. Due to the intricate details in the
protocols and policies of HTTPS, misconfiguration widely occurs
in today’s implementation, and HTTP header inconsistency is com-
mon among multi-servers as well. First, servers may not implement
strict Host checks [26, 31]. For example, servers may not reject the
request when the Host header is not matched, but return a 301/302
Redirect or even 200 Accept via the fallback server instead. In
our threat model, such a ServerB with shared certificates can give
attackers the chance to attack the benign ServerA. Second, some
servers have not enforced the best practice of security policies,
such as HSTS and CSP. It is the misconfigured HTTP headers and

the vulnerable response contents that are used for SCC attacks on
secure traffic. Besides, the pervasiveness of inconsistencies among
servers still affect some high profile websites [25, 48, 52]. Therefore,
developers should pay more attention to the implementation details
for security.
Key Reason 3: Absent Policies for Maintaining the Secure
Context. An SCC attack can succeed because (1) the traffic is
rerouted to a third-party server, and (2) that server has security
flaws. However, applications from upper layers do not know the
change of the peer host from transport and network layers. User
agents can only authenticate servers and check the hostnames by
TLS certificates, which are unreliable in the certificate sharing sce-
nario. As such, a policy is needed to let clients know the server’s
hostnames they are talking with and take actions to maintain the
secure context. Though HSTS can help to mitigate the HTTPS
downgrading attacks, it is hard to enforce full HSTS policy for all
sites, even Google’ servers [4]. Besides, the HSTS policy can be
bypassed as well.

6.2 Mitigation
Browsers should enhance the following policies to protect the
browsing context. First, add a notification for the insecure changes
of context. As we discussed in Section 4.3, attackers can have the
browsing context recovered to the secure one after launching the
HTTPS downgrading attacks (Figure 5). However, modern browsers
will not warn the users of the downgrading process in the middle of
the attack, and they present “secure” icons which expose the users
to a threat. As such, we recommend browsers to show security indi-
cators about the changing of the browsing context. In more detail,
the HTTPS connection that is redirected from an HTTP one should
not be shown as “secure”, though it is protected by a trusted TLS cer-
tificate. For example, the request for https://a.bank.com?orderid=b
in the third process in Figure 5 should be marked as “not absolutely
safe” or other warnings like that.

Besides, there is a trend that Google Chrome may stop HTTP
file downloads from the HTTPS webpage [3]. Based on this, we
further recommend that browsers should also block the secure
download, the context of which has been changed like “HTTPS-
>HTTP->HTTPS”. It is because the resources downloaded through
the final HTTPS request of the link can be a malicious one replaced
by the attacker.

Second, block all mixed contents. In SCC attacks, the attacker
may hijack the request for a subresource of a webpage, so that
there will be mixed contents in the browser. While mainstream
browsers block the mixed active contents [8, 12, 17, 18], the passive
contents have been considered as less disturbing since they may
not be relevant to security or privacy. However, we find the QR
codes, mostly used for the login or the payment process in China,
are presented as images that are the passive contents, and SCC
attacks can downgrade the requests for them.

Up until now, mixed passive contents (e.g., image, video) have
not been blocked by all browsers yet. Only Chrome that releases
an update to block all mixed content (active and passive), ensur-
ing that HTTPS pages can no more load any HTTP resources[10].
Considering the security, we recommend all browsers to block any
insecure requests from the HTTPS context.

https://gaode.com


6.3 Responsible Disclosure
We have submitted the issues caused by the shared TLS certificates
and a demo case to the China National Vulnerability Database of
Information Security (CNNVD). It rates the issues as the medium
risk. Meanwhile, we have been in the process of contacting all
of the affected vendors (nearly one hundred). Up until now, we
have contacted the individual vendors of which we showcase in
the paper, and received the following responses. (1) JD: We report
the issues and the payment hijacking attack to JD’s SRC, which
has confirmed the exploitation as a threat and adopted updates
to their website. (2) Alibaba: Alibaba has confirmed the attacks
that we report as well, and it is still in the process of mitigating
the issues. (3) Microsoft and Netease: They concern about the
reported issues and require the PoC of the attacks. Since we have
not finished the demo videos, we still need to communicate with
them continually. (4) Sohu: We also report the certificate sharing
issues to Sohu SRC, but it has not replied yet. Moreover, we have
been discussing the issues and mitigations with Chrome. They
confirm the threat model and reply that their new plan, applying
mixed content checks to all redirects when loading a resource, will
help to mitigate these issues. However, this update can not cover all
attack scenarios, as we mentioned in Mitigation 1. As such, we will
further contact other affected vendors to fix the issues and discuss
the mitigation methods with the browser vendors.

7 RELATEDWORK
HTTPS Security and Stripping Attacks. HTTPS security has
been discussed for years. More and more researchers focus on the
adoption and deployment of HTTPS [35, 38, 45, 55]. Previous works
have introduce a range of attacks on HTTPS, such as the attacks on
the cipher weakness [1, 19]. Also, the attackers can rollback the TLS
version, conducting the downgrade attacks [7, 20]. Though policies
have been proposed to enhance HTTPS security, users have still
been exposed to potential MITM attacks, especially when there are
intermediate entities like interception software [30, 32], malicious
proxies [28, 30, 32, 62], and content delivery networks (CDNs) [47]
in the path. Regardless of protocol defects, a man in the middle
can simply strip HTTPS protection, by SSL Stripping attacks [50,
51, 53] or PBP attacks [27]. For defending such stripping attacks,
optional mechanisms including HSTS are presented. By measuring
and exploring the adoption, works show that HSTS policy is still
messed in configuration [42, 46, 54, 60] and can be bypassed [59].
Some variants of stripping attacks appear, when HSTS is partially
deployed [22, 42, 61], or in the help of malicious DNS servers [13,
33]. However, these stripping attacks are noticeable to users now,
because of browser security indicators, which show connection
security and the authenticity of the remote web server.

For further attacks without being noticed, [31] and [14] uncover
a new possibility of stripping attacks under the shared security
environment, which can confuse the origins. As a common phe-
nomenon, the multi-domain certificates are widely used in the wild
for the convenience of certificate management. Thus, we begin
to make an empirical study on the HTTPS hijacking or stripping
attacks based on shared certificates (SCC attacks) to explore the
threat of such attacks in the real-world. Compared with previous
stripping attacks, SCC attacks can apply to the established secure

connection. Moreover, attackers can bypass well-deployed policies
by a flawed third-party server under the protection of a legitimate
TLS certificate.
HTTPMisconfigurations and Inconsistencies. HTTP headers’
inconsistencies are proved disastrous in an adversarial context [44].
However, due to the misconfigurations by developers, implemen-
tations vary among different entities. The inconsistencies exist
between two web servers, between middleboxes (e.g., proxies, fire-
walls, CDN nodes) and back-end servers, or even between different
user agents [52]. In fact, ambiguities among entities can appear in
any security policies enforced by HTTP headers, including HSTS
and CORS [25, 42]. Mendoza et al. explored the impact of subtle
inconsistencies of HTTP security headers for websites on different
platforms (e.g., desktop, mobile), which expose users to attack [52].

Notably, Chen et al. demonstrated the implications of incon-
sistent implementations while processing Host, a critical HTTP
header indicating the origin while enforcing security policies [26].
The defects of interpreting Hostmay break the isolation of different
origins, especially in HTTPS environments [31]. Under the premise
of origin confusion, we find the well-known inconsistencies of se-
curity policies may influence the secure context and will lead to
more attack scenarios with the help of shared certificates.

8 CONCLUSION
Though the specially designed policies can mitigate well-known
attacks like SSL stripping, it is still vulnerable in the origin con-
fusion scenarios with shared TLS certificates. We systematically
evaluate the implications of SCC attacks. We show the adversaries
can hijack the secure traffic between clients and well-configured
servers, by using the misconfigured response headers from other
servers. The attacks apply to established secure connections, which
are unnoticeable for users and applications because the accessed
website’s certificate is valid for the flawed server. We find several
attack scenarios like payment hijacking, download hijacking from
major sites, like Microsoft, Alibaba, and JD.com. Meanwhile, we
propose a systematical methodology to discover the exploitable
web servers in the wild. Through a measurement study, we find
25.2% subdomains of Alexa Top 500 websites are affected by these
issues. From the implementations, we find diversity among the web-
sites on dealing with security policies, especially HTTP headers.
Besides, the widely shared TLS certificates should take primary
responsibility. As such, we expect the community and the develop-
ers should raise more attention to the security status of certificate
management and policy implementation.
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Table 4: TheResponseHeaders of the SameHTTPSRequests
Sent from Different Regions (for Case 4)

Request URL https://www.weibo.com/
Dst IP 180.149.134.141
Src IPs Location Response Headers

111.25.158.225 Jilin, China

HTTP/1.1 200 OK
Server: WeiBo/LB
Transfer-Encoding: chunked
pramga: no-cache
Content-Encoding: gzip
LB_HEADER: venus244
. . .

45.32.47.58 Tokyo, Japan

HTTP/1.1 302 Moved Temporarily
server: nginx
status: 302
pramga: no-cache
location: http://weibo.com/jp
x-via-cdn: f=Akamai, s=23.207.172.156,
c=45.32.47.58
. . .

144.202.112.190 Los Angeles, US

HTTP/1.1 302 Moved Temporarily
pramga: no-cache
server: nginx
status: 302
location: http://weibo.com/us
x-via-cdn: f=Akamai, s=23.208.64.165,
c=144.202.112.190
. . .
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APPENDIX
A THE RESPONSE HEADERS OF THE

SWITCHING CLIENT IP CASE
In Section 5.3.2, we show a Case 4 of downgrading HTTPS traffic
by switching the client IP address. Here, in Table 4, we present
the response headers we receive at the locations, including Jilin
(China), Tokyo (Japan), and Los Angeles (US). From the Location
headers, we see that WeiBo serves for users in Japan via the path
of /jp, and users in the US via /us.

howpub =https://www.speedguide.net/port.php?port=8443
howpub =https://www.speedguide.net/port.php?port=8443
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